Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Bioengineering (Basel) ; 10(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508814

RESUMEN

To investigate the pathogenic mechanisms of calcified aortic valve disease (CAVD), it is necessary to develop a new three-dimensional model that contains valvular interstitial cells (VIC) and valvular endothelial cells (VEC). For this purpose, ovine aortic valves were processed to isolate VIC and VEC that were dissolved in an alginate/gelatin hydrogel. A 3D-bioprinter (3D-Bioplotter® Developer Series, EnvisionTec, Gladbeck, Germany) was used to print cell-laden tissue constructs containing VIC and VEC which were cultured for up to 21 days. The 3D-architecture, the composition of the culture medium, and the hydrogels were modified, and cell viability was assessed. The composition of the culture medium directly affected the cell viability of the multicellular tissue constructs. Co-culture of VIC and VEC with a mixture of 70% valvular interstitial cell and 30% valvular endothelial cell medium components reached the cell viability best tested with about 60% more living cells compared to pure valvular interstitial cell medium (p = 0.02). The tissue constructs retained comparable cell viability after 21 days (p = 0.90) with different 3D-architectures, including a "sandwich" and a "tube" design. Good long-term cell viability was confirmed even for thick multilayer multicellular tissue constructs. The 3D-bioprinting of multicellular tissue constructs with VEC and VIC is a successful new technique to design tissue constructs that mimic the structure of the native aortic valve for research applications of aortic valve pathologies.

2.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311209

RESUMEN

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Humanos , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/farmacología
3.
Cardiovasc Res ; 119(7): 1568-1582, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869774

RESUMEN

AIMS: A key event in the regulation of cardiac contraction and relaxation is the phosphorylation of phospholamban (PLN) that relieves the inhibition of the sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a). PLN exists in an equilibrium between monomers and pentamers. While only monomers can inhibit SERCA2a by direct interaction, the functional role of pentamers is still unclear. This study investigates the functional consequences of PLN pentamerization. METHODS AND RESULTS: We generated transgenic mouse models expressing either a PLN mutant that cannot form pentamers (TgAFA-PLN) or wild-type PLN (TgPLN) in a PLN-deficient background. TgAFA-PLN hearts demonstrated three-fold stronger phosphorylation of monomeric PLN, accelerated Ca2+ cycling of cardiomyocytes, and enhanced contraction and relaxation of sarcomeres and whole hearts in vivo. All of these effects were observed under baseline conditions and abrogated upon inhibition of protein kinase A (PKA). Mechanistically, far western kinase assays revealed that PLN pentamers are phosphorylated by PKA directly and independent of any subunit exchange for free monomers. In vitro phosphorylation of synthetic PLN demonstrated that pentamers even provide a preferred PKA substrate and compete with monomers for the kinase, thereby reducing monomer phosphorylation and maximizing SERCA2a inhibition. However, ß-adrenergic stimulation induced strong PLN monomer phosphorylation in TgPLN hearts and sharp acceleration of cardiomyocyte Ca2+ cycling and haemodynamic values that now were indistinguishable from TgAFA-PLN and PLN-KO hearts. The pathophysiological relevance of PLN pentamerization was evaluated using transverse aortic constriction (TAC) to induce left ventricular pressure overload. Compared to TgPLN, TgAFA-PLN mice demonstrated reduced survival after TAC, impaired cardiac haemodynamics, failure to respond to adrenergic stimulation, higher heart weight, and increased myocardial fibrosis. CONCLUSIONS: The findings show that PLN pentamerization greatly impacts on SERCA2a activity as it mediates the full range of PLN effects from maximum inhibition to full release of SERCA2a function. This regulation is important for myocardial adaptation to sustained pressure overload.


Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Ratones , Animales , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Transgénicos , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adrenérgicos/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Biomed Mater ; 18(1)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36322974

RESUMEN

Calcific aortic valve disease (CAVD) is a frequent cardiac pathology in the aging society. Although valvular interstitial cells (VICs) seem to play a crucial role, mechanisms of CAVD are not fully understood. Development of tissue-engineered cellular models by 3D-bioprinting may help to further investigate underlying mechanisms of CAVD. VIC were isolated from ovine aortic valves and cultured in Dulbecco's modified Eagle's Medium (DMEM). VIC of passages six to ten were dissolved in a hydrogel consisting of 2% alginate and 8% gelatin with a concentration of 2 × 106VIC ml-1. Cell-free and VIC-laden hydrogels were printed with an extrusion-based 3D-bioprinter (3D-Bioplotter®Developer Series, EnvisionTec, Gladbeck, Germany), cross-linked and incubated for up to 28 d. Accuracy and durability of scaffolds was examined by microscopy and cell viability was tested by cell counting kit-8 assay and live/dead staining. 3D-bioprinting of scaffolds was most accurate with a printing pressure ofP< 400 hPa, nozzle speed ofv< 20 mm s-1, hydrogel temperature ofTH= 37 °C and platform temperature ofTP= 5 °C in a 90° parallel line as well as in a honeycomb pattern. Dissolving the hydrogel components in DMEM increased VIC viability on day 21 by 2.5-fold compared to regular 0.5% saline-based hydrogels (p< 0.01). Examination at day 7 revealed dividing and proliferating cells. After 21 d the entire printed scaffolds were filled with proliferating cells. Live/dead cell viability/cytotoxicity staining confirmed beneficial effects of DMEM-based cell-laden VIC hydrogel scaffolds even 28 d after printing. By using low pressure printing methods, we were able to successfully culture cell-laden 3D-bioprinted VIC scaffolds for up to 28 d. Using DMEM-based hydrogels can significantly improve the long-term cell viability and overcome printing-related cell damage. Therefore, future applications 3D-bioprinting of VIC might enable the development of novel tissue engineered cellular 3D-models to examine mechanisms involved in initiation and progression of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Bioimpresión , Calcinosis , Ovinos , Animales , Bioimpresión/métodos , Hidrogeles , Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/patología , Supervivencia Celular , Células Cultivadas , Ingeniería de Tejidos/métodos , Gelatina , Impresión Tridimensional , Andamios del Tejido
5.
Front Cardiovasc Med ; 9: 942430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386326

RESUMEN

Diabetes and its major key determinants insulin resistance and hyperglycemia are known risk factors for calcific aortic valve disease (CAVD). The processes leading to molecular and structural alterations of the aortic valve are yet not fully understood. In previous studies, we could show that valvular interstitial cells (VIC) display canonical elements of classical insulin signaling and develop insulin resistance upon hyperinsulinemia and hyperglycemia accompanied by impaired glucose metabolism. Analyses of cultured VIC and aortic valve tissue revealed extracellular matrix remodeling and degenerative processes. Since PI3K signaling through mammalian target of rapamycin (mTOR) is involved in fibrotic processes of the heart, we aim at further functional investigation of this particular Akt-downstream signaling pathway in the context of diabetes-induced CAVD. Primary cultures of VIC were treated with hyperinsulinemia and hyperglycemia. Phosphorylation of mTOR(Ser2448) was determined by Western blot analysis after acute insulin stimulus. Inhibition of mTOR phosphorylation was performed by rapamycin. Phosphorylation of mTOR complex 1 (MTORC1) downstream substrates 4E-BP1(Thr37/46) and P70S6K(Thr389), and MTORC2 downstream substrate Akt(Ser473) as well as the PDK1-dependent phosphorylation of Akt(Thr308) was investigated. Markers for extracellular matrix remodeling, cell differentiation and degenerative changes were analyzed by Western blot analysis, semi-quantitative real-time PCR and colorimetric assays. Hyperinsulinemia and hyperglycemia lead to alterations of VIC activation, differentiation and matrix remodeling as well as to an abrogation of mTOR phosphorylation. Inhibition of mTOR signaling by rapamycin leads to a general downregulation of matrix molecules, but to an upregulation of α-smooth muscle actin expression and alkaline phosphatase activity. Comparison of expression patterns upon diabetic conditions and rapamycin treatment reveal a possible regulation of particular matrix components and key degeneration markers by MTORC1 downstream signaling. The present findings broaden the understanding of mitogenic signaling pathways in VIC triggered by hyperinsulinemia and hyperglycemia, supporting the quest for developing strategies of prevention and tailored treatment of CAVD in diabetic patients.

6.
Front Bioeng Biotechnol ; 10: 896269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213077

RESUMEN

Objectives: Decellularized extracellular matrix (dECM) is increasingly used in a wide range of regenerative medicine applications and may also offer the potential to support injured myocardium. Here, we evaluated the myocardial gene expression pattern after myocardial infarction (MI) in a standardized rodent LAD-ligation model with and without ventricular stabilization with a customized, cardiac dECM-based scaffold (cdECM). Methods: MI was induced in male Wistar rats by standard LAD-ligation and confirmed 14 days post-intervention by echocardiographic parameters (FAS<40%). Cardiac ECM from donor rats was used to generate individual cdECM-scaffolds (tissue engineered myocardial sleeve, TEMS), which were epicardially implanted after confirmed MI for ventricular stabilization. After 4 and 8 weeks heart function was assessed by echocardiography, rats were sacrificed and explanted hearts were analyzed. In addition to histological analysis, standardized anterior left ventricular wall myocardial tissue samples were assessed by quantitative real-time PCR evaluating the specific gene expression pattern for immunomodulatory (IL-10, TGFBR2, TNFα), pro-angiogenic (VEGFA, FGF2, PGF, PDGFB), pro-survival (HGF, SDF1, IGF1, AKT1), remodeling-associated (TIMP1, MMP2, MMP9) and infarction-specific (NPPA, NPPB) markers. Results: Ventricular stabilization led to integration of the TEMS-scaffold into the myocardial scar with varying degrees of cellular infiltration, as well as significantly improved echocardiographic parameters demonstrating attenuation of maladaptive cardiac remodeling. Further, TEMS implantation after MI altered the myocardial gene expression pattern. Differences in gene expression were most striking after 4 weeks with significantly reduced expression of NPPA (0.36 ± 0.26 vs 0.75 ± 0.40; p < 0.05), NPPB (0.47 ± 0.25 vs 0.91 ± 0.429; p < 0.01), TGFBR2 (0.68 ± 0.16 vs 0.90 ± 0.14; p < 0.01) and PDGFB (0.81 ± 0.13 vs 1.06 ± 0.14; p < 0.01) as well as increased expression of IL-10 (5.93 ± 5.67 vs 1.38 ± 0.60; p < 0.05), PGF (1.48 ± 0.38 vs 1.09 ± 0.25; p < 0.05) and IGF1 (1.67 ± 0.70 vs 1.03 ± 0.42; p < 0.05). However, after 8 weeks differences in the gene expression patterns of remodeling-associated, and pro-angiogenic markers could still be observed between groups. Conclusion: Ventricular stabilization via TEMS implantation after MI did not only led to biological integration of the cdECM-scaffolds into the host tissue and improved functional cardiac parameters, but also altered 4 and 8 week gene expression of infarcted myocardium, possibly contributing to reducing chronic deteriorating effects while increasing the potential for myocardial regeneration.

7.
FASEB J ; 36(11): e22591, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251410

RESUMEN

While oxidative stress is known as key element in the pathogenesis of atherosclerosis and calcific aortic valve disease, its role in the degeneration of biological cardiovascular grafts has not been clarified yet. Therefore, the present study aimed to examine the impact of oxidative stress on the degeneration of biological cardiovascular allografts in a standardized chronic implantation model realized in rats exhibiting superoxide dismutase 3 deficiency (SOD3(-) ). Rats with SOD3 loss-of-function mutation (n = 24) underwent infrarenal implantation of cryopreserved valved aortic conduits, while SOD3-competent recipients served as controls (n = 28). After a follow-up period of 4 or 12 weeks, comparative analyses addressed degenerative processes, hemodynamics, and evaluation of the oxidative stress model. SOD3(-) rats presented decreased circulating SOD activity (p = .0079). After 12 weeks, 58% of the implant valves in SOD3(-) rats showed regurgitation (vs. 31% in controls, p = .2377). Intima hyperplasia and chondro-osteogenic transformation contributed to progressive graft calcification (p = .0024). At 12 weeks, hydroxyapatite deposition (p = .0198) and the gene expression of runt-related transcription factor-2 (Runx2) (p = .0093) were significantly enhanced in group SOD3(-) . This study provides the first in vivo evidence that impaired systemic antioxidant activity contributes to biological cardiovascular graft degeneration.


Asunto(s)
Antioxidantes , Válvula Aórtica , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Prótesis Valvulares Cardíacas , Animales , Ratas , Antioxidantes/metabolismo , Válvula Aórtica/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Hidroxiapatitas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Mutación con Pérdida de Función
8.
Sci Rep ; 12(1): 12933, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902612

RESUMEN

Thromboembolism is frequent in infective endocarditis (IE). However, the optimal antithrombotic regimen in IE is unknown. Staphylococcus aureus (SA) is the leading cause of IE. First studies emphasize increased platelet reactivity by SA. In this pilot study, we hypothesized that platelet reactivity is increased in patients with SA- IE, which could be abrogated by antiplatelet medication. We conducted a prospective, observatory, single-center cohort study in 114 patients with IE, with four cohorts: (1) SA coagulase positive IE without aspirin (ASA) medication, (2) coagulase negative IE without ASA, (3) SA coagulase positive IE with ASA, (4) coagulase negative IE with ASA. Platelet function was measured by Multiplate electrode aggregometry, blood clotting by ROTEM thromboelastometry. Bleeding events were assessed according to TIMI classification. In ASA-naïve patients, aggregation with ADP was increased with coag. pos. IE (coagulase negative: 39.47 ± 4.13 AUC vs. coagulase positive: 59.46 ± 8.19 AUC, p = 0.0219). This was abrogated with ASA medication (coagulase negative: 42.4 ± 4.67 AUC vs. coagulase positive: 45.11 ± 6.063 AUC p = 0.7824). Aspirin did not increase bleeding in SA positive patients. However, in SA negative patients with aspirin, red blood cell transfusions were enhanced. SA coagulase positive IE is associated with increased platelet reactivity. This could be abrogated by aspirin without increased bleeding risk. The results of this pilot study suggest that ASA might be beneficial in SA coagulase positive IE. This needs to be confirmed in clinical trials.


Asunto(s)
Endocarditis Bacteriana , Infecciones Estafilocócicas , Aspirina/farmacología , Aspirina/uso terapéutico , Coagulasa , Estudios de Cohortes , Endocarditis Bacteriana/tratamiento farmacológico , Humanos , Proyectos Piloto , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios Prospectivos , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
9.
ESC Heart Fail ; 9(1): 270-282, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34935306

RESUMEN

AIMS: Donor heart shortage leads to increasing use of left ventricular assist device (LVAD) as bridge-to-transplant or destination therapy. Prolonged LVAD support is associated with aortic valve insufficiency, representing a relevant clinical problem in LVAD patients. Nevertheless, the impact of LVAD support on inflammation, remodelling, and chondro-osteogenic differentiation of the aortic valve is still not clearly understood. The aim of the study is to evaluate the impact of LVAD support on structural and molecular alterations of the aortic valve. METHODS AND RESULTS: During heart transplantation, aortic valves of 63 heart failure patients without (n = 22) and with LVAD support (n = 41) were collected and used for analysis. Data on clinical course as well as echocardiographic data were analysed. Calcification and markers of remodelling, chondro-osteogenic differentiation, and inflammation were evaluated by computed tomography, by mRNA analysis and by histology and immunohistochemistry. Expression of inflammation markers of the LVAD group was analysed with regard to levels of C-reactive protein and driveline infections. Calcium accumulation and mRNA expression of determined markers were correlated with duration of LVAD support. Data were also analysed relating to aortic valve opening and aortic valve insufficiency. There was no difference in the frequency of cardiovascular risk factors or comorbidities between the patient groups. Expression of matrix metalloproteinase-9 (P = 0.007), alpha-smooth muscle actin (P = 0.045), and osteopontin (P = 0.003) were up-regulated in aortic valves of LVAD patients. Histological appearance of the aortic valve was similar in patients with or without LVAD, and computed tomography-based analysis not yet revealed significant difference in tissue calcification. Expression of interferon gamma (P = 0.004), interleukin-1 beta (P < 0.0001), and tumour necrosis factor alpha (P = 0.04) was up-regulated in aortic valves of LVAD patients without concomitant inflammatory cell infiltration and independent from unspecific inflammation. Expression of matrix metalloproteinase-2 (P = 0.038) and transforming growth factor beta (P = 0.0504) correlated negatively with duration of LVAD support. Presence of aortic valve insufficiency led to a significantly higher expression of interferon gamma (P = 0.007) in LVAD patients. There was no alteration in the determined markers in relation to aortic valve opening in LVAD patients. CONCLUSIONS: Left ventricular assist device support leads to signs of early aortic valve degeneration independent of support duration. Thus, the aortic valve of patients with LVAD support should be closely monitored, particularly in patients receiving destination therapy as well as in the prospect of using aortic valves of LVAD patients as homografts in case of bridge-to-transplant therapy.


Asunto(s)
Trasplante de Corazón , Corazón Auxiliar , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Corazón Auxiliar/efectos adversos , Humanos , Metaloproteinasa 2 de la Matriz , Osteogénesis , Estudios Retrospectivos , Donantes de Tejidos
10.
Eur J Cardiothorac Surg ; 63(1)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629469

RESUMEN

OBJECTIVES: Hypercholesterolaemia and obesity are risk factors for the development of calcified aortic valve disease and common comorbidities in respective patients. Peroxisome proliferator-activated receptor gamma activation has been shown to reduce the progression of native aortic valve sclerosis, while its effect on bioprosthetic valve degeneration is yet unknown. This project aims to analyse the impact of pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the degeneration of biological aortic valve conduits in an implantation model in obese and hypercholesterolaemic rats. METHODS: Cryopreserved allogenic rat aortic valve conduits (n = 40) were infrarenally implanted into Wistar rats on high-fat (34.6%) diet. One cohort was treated with pioglitazone (75 mg/kg chow; n = 20, group PIO) and compared to untreated rats (n = 20, group control). After 4 or 12 weeks, conduits were explanted and analysed by (immuno-)histology and real-time polymerase chain reaction. RESULTS: A significantly decreased intima hyperplasia occurred in group PIO compared to control after 4 (P = 0.014) and 12 weeks (P = 0.045). Calcification of the intima was significantly decreased in PIO versus control at 12 weeks (P = 0.0001). No significant inter-group differences were shown for media calcification after 4 and 12 weeks. Echocardiographically, significantly lower regurgitation through the implanted aortic valve conduit was observed in PIO compared to control after 4 (P = 0.018) and 12 weeks (P = 0.0004). Inflammatory activity was comparable between both groups. CONCLUSIONS: Systemic peroxisome proliferator-activated receptor gamma activation decreases intima hyperplasia and subsequent intima calcification of cryopreserved allografts in obese, hypercholesterolaemic recipients. Additionally, it seems to inhibit functional impairment of the implanted aortic valve. Further preclinical studies are required to determine the long-term impact of peroxisome proliferator-activated receptor gamma agonists on graft durability.


Asunto(s)
Prótesis Valvulares Cardíacas , Hipercolesterolemia , Animales , Ratas , Prótesis Valvulares Cardíacas/efectos adversos , Hipercolesterolemia/complicaciones , Hiperplasia , Obesidad , Pioglitazona/farmacología , PPAR gamma/agonistas , Ratas Wistar
11.
J Clin Med ; 10(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768376

RESUMEN

Serum levels of cytokines interleukin 1 beta ( IL-1ß) and interleukin 33 (IL-33) are highly abnormal in heart failure and remain elevated after mechanical circulatory support (MCS). However, local cytokine signaling induction remains elusive. Left (LV) and right ventricular (RV) myocardial tissue specimens of end-stage heart failure (HF) patients without (n = 24) and with MCS (n = 39; 594 ± 57 days) were analyzed for cytokine mRNA expression level of IL-1B, interleukin 1 receptor 1/2 (IL-1R1/2), interleukin 1 receptor-like 1 (IL-1RL1), IL-33 and interleukin-1 receptor accessory protein (IL-1RaP). MCS patients showed significantly elevated IL-1B expression levels (LV: 2.0 fold, p = 0.0058; RV: 3.3 fold, p < 0.0001). Moreover, IL-1R1, IL-1RaP and IL-33 expression levels strongly correlated with each other. IL-1RL1 and IL-1R2 expression levels were significantly higher in RV myocardial tissue (RV/LV ratio IL-1R2 HF: 4.400 ± 1.359; MCS: 4.657 ± 0.655; IL-1RL1 HF: 3.697 ± 0.876; MCS: 4.529 ± 0.5839). In addition, IL1-RaP and IL-33 RV expression levels were significantly elevated in MCS. Furthermore, IL-33 expression correlates with C-reactive protein (CRP) plasma levels in HF, but not in MCS patients. Increased expression of IL-1B and altered correlation patterns of IL-1 receptors indicate enhanced IL-1ß signaling in MCS patients. Correlation of IL-1 receptor expression with IL-33 may hint towards a link between both pathways. Moreover, diverging expression in LV and RV suggests specific regulation of local cytokine signaling.

12.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681744

RESUMEN

BACKGROUND: We aimed to examine the anti-calcification and anti-inflammatory effects of pioglitazone as a PPAR-gamma agonist on bioprosthetic-valve-bearing aortic grafts in a rat model of diabetes mellitus (DM). METHODS: DM was induced in male Wistar rats by high-fat diet with an intraperitoneal streptozotocin (STZ) injection. The experimental group received additional pioglitazone, and controls received normal chow without STZ (n = 20 each group). Cryopreserved aortic donor grafts including the aortic valve were analyzed after 4 weeks and 12 weeks in vivo for analysis of calcific bioprosthetic degeneration. RESULTS: DM led to a significant media proliferation at 4 weeks. The additional administration of pioglitazone significantly increased circulating adiponectin levels and significantly reduced media thickness at 4 and 12 weeks, respectively (p = 0.0002 and p = 0.0107, respectively). Graft media calcification was highly significantly inhibited by pioglitazone after 12 weeks (p = 0.0079). Gene-expression analysis revealed a significant reduction in relevant chondro-osteogenic markers osteopontin and RUNX-2 by pioglitazone at 4 weeks. CONCLUSIONS: Under diabetic conditions, pioglitazone leads to elevated circulating levels of adiponectin and to an inhibition of bioprosthetic graft degeneration, including lower expression of chondro-osteogenic genes, decreased media proliferation, and inhibited graft calcification in a small-animal model of DM.


Asunto(s)
Aorta/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Prótesis Valvulares Cardíacas/efectos adversos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Animales , Aorta/fisiopatología , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/terapia , Glucemia/metabolismo , Peso Corporal , Calcinosis/etiología , Calcinosis/terapia , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Ensayo de Materiales , Ratas Wistar
13.
J Cardiovasc Pharmacol ; 79(1): e103-e115, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654784

RESUMEN

ABSTRACT: Aortic valve replacement for severe stenosis is a standard procedure in cardiovascular medicine. However, the use of biological prostheses has limitations especially in young patients because of calcifying degeneration, resulting in implant failure. Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist, was shown to decrease the degeneration of native aortic valves. In this study, we aim to examine the impact of pioglitazone on inflammation and calcification of aortic valve conduits (AoC) in a rat model. Cryopreserved AoC (n = 40) were infrarenally implanted into Wistar rats treated with pioglitazone (75 mg/kg chow; n = 20, PIO) or untreated (n = 20, controls). After 4 or 12 weeks, AoC were explanted and analyzed by histology, immunohistology, and polymerase chain reaction. Pioglitazone significantly decreased the expression of inflammatory markers and reduced the macrophage-mediated inflammation in PIO compared with controls after 4 (P = 0.03) and 12 weeks (P = 0.012). Chondrogenic transformation was significantly decreased in PIO after 12 weeks (P = 0.001). Calcification of the intima and media was significantly reduced after 12 weeks in PIO versus controls (intima: P = 0.008; media: P = 0.025). Moreover, echocardiography revealed significantly better functional outcome of the AoC in PIO after 12 weeks compared with control. Interestingly, significantly increased intima hyperplasia could be observed in PIO compared with controls after 12 weeks (P = 0.017). Systemic PPAR-gamma activation prevents inflammation as well as intima and media calcification in AoC and seems to inhibit functional impairment of the implanted aortic valve. To further elucidate the therapeutic role of PPAR-gamma regulation for graft durability, translational studies and long-term follow-up data should be striven for.


Asunto(s)
Insuficiencia de la Válvula Aórtica/cirugía , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/trasplante , Bioprótesis , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Prótesis Valvulares Cardíacas , PPAR gamma/agonistas , Pioglitazona/farmacología , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Insuficiencia de la Válvula Aórtica/metabolismo , Insuficiencia de la Válvula Aórtica/patología , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/prevención & control , Condrogénesis/efectos de los fármacos , Criopreservación , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Mediadores de Inflamación/metabolismo , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal
14.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203572

RESUMEN

Type 2 diabetes mellitus (T2D) is one of the prominent risk factors for the development and progression of calcific aortic valve disease. Nevertheless, little is known about molecular mechanisms of how T2D affects aortic valve (AV) remodeling. In this study, the influence of hyperinsulinemia and hyperglycemia on degenerative processes in valvular tissue is analyzed in intact AV exposed to an either static or dynamic 3D environment, respectively. The complex native dynamic environment of AV is simulated using a software-governed bioreactor system with controlled pulsatile flow. Dynamic cultivation resulted in significantly stronger fibrosis in AV tissue compared to static cultivation, while hyperinsulinemia and hyperglycemia had no impact on fibrosis. The expression of key differentiation markers and proteoglycans were altered by diabetic conditions in an environment-dependent manner. Furthermore, hyperinsulinemia and hyperglycemia affect insulin-signaling pathways. Western blot analysis showed increased phosphorylation level of protein kinase B (AKT) after acute insulin stimulation, which was lost in AV under hyperinsulinemia, indicating acquired insulin resistance of the AV tissue in response to elevated insulin levels. These data underline a complex interplay of diabetic conditions on one hand and biomechanical 3D environment on the other hand that possesses an impact on AV tissue remodeling.


Asunto(s)
Enfermedad de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Diabetes Mellitus/patología , Hiperglucemia/patología , Hiperinsulinismo/patología , Insulina/metabolismo , Animales , Enfermedad de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/genética , Diabetes Mellitus/metabolismo , Humanos , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo
15.
Biomedicines ; 9(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922670

RESUMEN

Calcific aortic valve disease is the most common valvular heart disease in industrialized countries. Pulsatile pressure, sheer and bending stress promote initiation and progression of aortic valve degeneration. The aim of this work is to establish an ex vivo model to study the therein involved processes. Ovine aortic roots bearing aortic valve leaflets were cultivated in an elaborated bioreactor system with pulsatile flow, physiological temperature, and controlled pressure and pH values. Standard and pro-degenerative treatment were studied regarding the impact on morphology, calcification, and gene expression. In particular, differentiation, matrix remodeling, and degeneration were also compared to a static cultivation model. Bioreactor cultivation led to shrinking and thickening of the valve leaflets compared to native leaflets while gross morphology and the presence of valvular interstitial cells were preserved. Degenerative conditions induced considerable leaflet calcification. In comparison to static cultivation, collagen gene expression was stable under bioreactor cultivation, whereas expression of hypoxia-related markers was increased. Osteopontin gene expression was differentially altered compared to protein expression, indicating an enhanced protein turnover. The present ex vivo model is an adequate and effective system to analyze aortic valve degeneration under controlled physiological conditions without the need of additional growth factors.

16.
Biomed Mater ; 15(3): 035013, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31694001

RESUMEN

Optimized biocompatibility is crucial for the durability of cardiovascular implants. Previously, a combined coating with fibronectin (FN) and stromal cell-derived factor 1α (SDF1α) has been shown to accelerate the in vivo cellularization of synthetic vascular grafts and to reduce the calcification of biological pulmonary root grafts. In this study, we evaluate the effect of side-specific luminal SDF1α coating and adventitial FN coating on the in vivo cellularization and degeneration of decellularized rat aortic implants. Aortic arch vascular donor grafts were detergent-decellularized. The luminal graft surface was coated with SDF1α, while the adventitial surface was coated with FN. SDF1α-coated and uncoated grafts were infrarenally implanted (n = 20) in rats and followed up for up to eight weeks. Cellular intima population was accelerated by luminal SDF1α coating at two weeks (92.4 ± 2.95% versus 61.1 ± 6.51% in controls, p < 0.001). SDF1α coating inhibited neo-intimal hyperplasia, resulting in a significantly decreased intima-to-media ratio after eight weeks (0.62 ± 0.15 versus 1.35 ± 0.26 in controls, p < 0.05). Furthermore, at eight weeks, media calcification was significantly decreased in the SDF1α group as compared to the control group (area of calcification in proximal arch region 1092 ± 517 µm2 versus 11 814 ± 1883 µm2, p < 0.01). Luminal coating with SDF1α promotes early autologous intima recellularization in vivo and attenuates neo-intima hyperplasia as well as calcification of decellularized vascular grafts.


Asunto(s)
Prótesis Vascular , Quimiocina CXCL12/química , Materiales Biocompatibles Revestidos , Fibronectinas/química , Músculo Esquelético/inervación , Regeneración Nerviosa , Animales , Bioprótesis , Diferenciación Celular , Quimiotaxis , Reactivos de Enlaces Cruzados/química , Electrofisiología , Matriz Extracelular/metabolismo , Heparina , Laminina/química , Masculino , Músculo Esquelético/metabolismo , Neuritas/metabolismo , Células PC12 , Polímeros/química , Ratas , Ratas Sprague-Dawley , Nervio Ciático/patología , Células del Estroma , Injerto Vascular , Caminata
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2526-2537, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152868

RESUMEN

Type 2 diabetes is a known risk factor for cardiovascular diseases and is associated with an increased risk to develop aortic heart valve degeneration. Nevertheless, molecular mechanisms leading to the pathogenesis of valve degeneration in the context of diabetes are still not clear. Hence, we hypothesized that classical key factors of type 2 diabetes, hyperinsulinemia and hyperglycemia, may affect signaling, metabolism and degenerative processes of valvular interstitial cells (VIC), the main cell type of heart valves. Therefore, VIC were derived from sheep and were treated with hyperinsulinemia, hyperglycemia and the combination of both. The presence of insulin receptors was shown and insulin led to increased proliferation of the cells, whereas hyperglycemia alone showed no effect. Disturbed insulin response was shown by impaired insulin signaling, i.e. by decreased phosphorylation of Akt/GSK-3α/ß pathway. Analysis of glucose transporter expression revealed absence of glucose transporter 4 with glucose transporter 1 being the predominantly expressed transporter. Glucose uptake was not impaired by disturbed insulin response, but was increased by hyperinsulinemia and was decreased by hyperglycemia. Analyses of glycolysis and mitochondrial respiration revealed that VIC react with increased activity to hyperinsulinemia or hyperglycemia, but not to the combination of both. VIC do not show morphological changes and do not acquire an osteogenic phenotype by hyperinsulinemia or hyperglycemia. However, the treatment leads to increased collagen type 1 and decreased α-smooth muscle actin expression. This work implicates a possible role of diabetes in early phases of the degeneration of aortic heart valves.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Diabetes Mellitus Tipo 2/patología , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Animales , Válvula Aórtica/citología , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/etiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucólisis , Hiperglucemia/patología , Hiperinsulinismo/patología , Insulina/farmacología , Mitocondrias/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ovinos
18.
Biomed Mater ; 14(3): 035014, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30769335

RESUMEN

INTRODUCTION: Calcific aortic valve disease (CAVD) is the most common acquired heart valve disease with complex underlying pathomechanisms that are yet not fully understood. Three-dimensional (3D) cell culture models as opposed to conventional two-dimensional (2D) techniques may reveal new aspects of CAVD and serve as a transitional platform between conventional 2D cell culture and in vivo experiments. METHODS: Here we report on fabrication and characterization of a novel 3D hydrogel derived from cell-free native aortic valves. A detailed analysis containing protein composition, rheological behavior, cytotoxic and proliferative effects as well as results of 3D cell culture experiments are presented. Moreover, this aortic valve derived hydrogel (AVdH) is compared to commercially available biological extracellular matrix (ECM) components to evaluate and classify AVdH with respect to other currently used ECM solutions, i.e. Collagen type I and Matrigel®. RESULTS: On the biochemical level, a complex composition of native proteins was detected. Using different techniques, including mass spectrometry with Gene Ontology network and enrichment analysis, different fundamental biological functions of AVdH were identified, including peptidase-, peptidase inhibitor-, growth- and binding activity. No cytotoxic effects were detected and AVdH showed positive effects on cell growth and proliferation in vitro when compared to Collagen type I and Matrigel®. CONCLUSION: These results suggest AVdH as an organotypic ECM supporting sophisticated 3D cell culture model studies, while mimicking the native environment of the aortic valve to a greater level for enhanced in vitro analyses.


Asunto(s)
Válvula Aórtica/fisiología , Materiales Biomiméticos , Técnicas de Cultivo de Célula , Hidrogeles/química , Ingeniería de Tejidos/métodos , Animales , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/terapia , Calcinosis/terapia , Proliferación Celular , Sistema Libre de Células , Colágeno/química , Combinación de Medicamentos , Matriz Extracelular/química , Enfermedades de las Válvulas Cardíacas/terapia , Cinética , Laminina/química , Proteoglicanos/química , Reología , Ovinos , Programas Informáticos
19.
Diab Vasc Dis Res ; 16(3): 254-269, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563371

RESUMEN

Degenerative aortic valve disease in combination with diabetes is an increasing burden worldwide. There is growing evidence that particularly small leucine-rich proteoglycans are involved in the development of degenerative aortic valve disease. Nevertheless, the role of these molecules in this disease in the course of diabetes has not been elucidated in detail and previous studies remain controversial. Therefore, the aim of this study is to broaden the knowledge about small leucine-rich proteoglycans in degenerative aortic valve disease and the influence of diabetes and hyperglycaemia on aortic valves and valvular interstitial cells is examined. Analyses were performed using reverse-transcription polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, (immuno)histology and colorimetric assays. We could show that biglycan, but not decorin and lumican, is upregulated in degenerated human aortic valve cusps. Subgroup analysis reveals that upregulation of biglycan is stage-dependent. In vivo, loss of biglycan leads to stage-dependent calcification and also to migratory effects on interstitial cells within the extracellular matrix. In late stages of degenerative aortic valve disease, diabetes increases the expression of biglycan in aortic valves. In vitro, the combinations of hyperglycaemic with pro-degenerative conditions lead to an upregulation of biglycan. In conclusion, biglycan represents a potential link between degenerative aortic valve disease and diabetes.


Asunto(s)
Insuficiencia de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Biglicano/metabolismo , Glucemia/metabolismo , Calcinosis/metabolismo , Diabetes Mellitus/sangre , Anciano , Animales , Insuficiencia de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/diagnóstico , Biglicano/genética , Calcinosis/diagnóstico , Calcio/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Condrogénesis , Decorina/metabolismo , Diabetes Mellitus/diagnóstico , Femenino , Fibrosis , Humanos , Lumican/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Osteogénesis , Oveja Doméstica , Transducción de Señal , Regulación hacia Arriba
20.
FASEB J ; 32(8): 4356-4369, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29558203

RESUMEN

Calcific aortic valve disease is an active disease process with lipoprotein deposition, chronic inflammation, and progressive leaflet degeneration. Expression of ectonucleotidases, a group of membrane-bound enzymes that regulate the metabolism of ATP and its metabolites, may coregulate the degeneration process of valvular interstitial cells (VICs). The aim of this study was to investigate the role of the enzymes of the purinergic system in the degeneration process of VICs. Ovine VICs were cultivated in vitro under different prodegenerative conditions and treated with inhibitors of ectonucleoside triphosphate diphosphohydrolase 1 (CD39)/ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and 5'-nucleotidase (CD73), as well as with adenosine and adenosine receptor agonists. Experiments were performed both in 2-dimensional (2-D) and 3-dimensional (3-D) cell-culture models. Our main findings were that VICs continuously release ATP. Inhibition of ATP hydrolyzing enzymes (CD39 and ENPP1) resulted in profound prodegenerative effects with a vigorous up-regulation of CD39, ENPP1, and CD73, as well as TGF-ß1 and osteopontin at the gene level. In our 3-D model, the effect was more pronounced than in 2-D monolayers. Increasing adenosine levels, as well as stimulating the adenosine receptors A2A and A2B, exhibited strong prodegenerative effects, whereas conversely, lowering adenosine levels by inhibition of CD73 resulted in protective effects against degeneration. Dysregulation of any one of these enzymes plays an important role in the degeneration process of VICs. Stimulation of ATP and adenosine has prodegenerative effects, whereas lowering the adenosine levels exerts a protective effect.-Weber, A., Barth, M., Selig, J. I., Raschke, S., Dakaras, K., Hof, A., Hesse, J., Schrader, J., Lichtenberg, A., Akhyari, P. Enzymes of the purinergic signaling system exhibit diverse effects on the degeneration of valvular interstitial cells in a 3-D microenvironment.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/metabolismo , Microambiente Celular/fisiología , Purinérgicos/metabolismo , Transducción de Señal/fisiología , 5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/metabolismo , Válvula Aórtica/metabolismo , Apirasa/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide , Técnicas de Cultivo de Célula/métodos , Cardiopatías Congénitas/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Ovinos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...