Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 627(8004): 671-679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448585

RESUMEN

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Proteínas Nucleares , Nucleosomas , Proteómica , Humanos , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteómica/métodos
3.
J Proteome Res ; 23(1): 117-129, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015820

RESUMEN

The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.


Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Flujo de Trabajo , Reproducibilidad de los Resultados , Plasma/química
4.
Sci Adv ; 5(5): eaav3673, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086817

RESUMEN

Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.


Asunto(s)
Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Animales , Línea Celular Tumoral , Chaperonas de Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo
5.
Methods Mol Biol ; 1832: 61-74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073522

RESUMEN

DNA replication and subsequent deposition of nucleosomes is critical for the maintenance of the genome and epigenetic inheritance. Experiments using human tissue culture cells harvested at defined stages of the cell cycle can help to elucidate the mechanism of histone deposition and chromatin assembly in detail. Here, we describe a pulsed-SILAC approach to distinguish newly synthesized and deposited histones during S-phase of the cell cycle from parental "old" histones incorporated in previous replications and to decipher posttranslational histone modifications (PTMs).


Asunto(s)
Ciclo Celular , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Acilación , Citometría de Flujo , Células HEK293 , Células HeLa , Humanos , Marcaje Isotópico , Péptidos/metabolismo , Solubilidad , Ácidos Sulfúricos/química , Técnicas de Cultivo de Tejidos
6.
Data Brief ; 4: 544-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26306323

RESUMEN

Centromeres of higher eukaryotes are epigenetically defined by the centromere specific histone H3 variant CENP-A(CID). CENP-A(CID) builds the foundation for the assembly of a large network of proteins. In contrast to mammalian systems, the protein composition of Drosophila centromeres has not been comprehensively investigated. Here we describe the proteome of Drosophila melanogaster centromeres as analyzed by quantitative affinity purification-mass spectrometry (AP-MS). The AP-MS input chromatin material was prepared from D. melanogaster cell lines expressing CENP-A(CID) or H3.3 fused to EGFP as baits. Centromere chromatin enriched proteins were identified based on their relative abundance in CENP-A(CID)-GFP compared to H3.3-GFP or mock affinity-purifications. The analysis yielded 86 proteins specifically enriched in centromere chromatin preparations. The data accompanying the manuscript on this approach (Barth et al., 2015, Proteomics 14:2167-78, DOI: 10.1002/pmic.201400052) has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000758.

7.
Genes Dev ; 29(6): 585-90, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25792596

RESUMEN

Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Metilación de ADN , Replicación del ADN , Humanos , Marcaje Isotópico , Estructura Terciaria de Proteína
8.
Mol Cell ; 56(4): 580-94, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457167

RESUMEN

Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/fisiología , Silenciador del Gen , Heterocromatina/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Núcleo Celular/metabolismo , Células Cultivadas , Centrómero/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Células Madre Embrionarias/fisiología , Sitios Genéticos , Histonas/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Repeticiones de Microsatélite , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Represoras , Ubiquitina-Proteína Ligasas , ADN Metiltransferasa 3B
9.
Proteomics ; 14(19): 2167-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24841622

RESUMEN

Centromeres are chromosomal regions crucial for correct chromosome segregation during mitosis and meiosis. They are epigenetically defined by centromeric proteins such as the centromere-specific histone H3-variant centromere protein A (CENP-A). In humans, 16 additional proteins have been described to be constitutively associated with centromeres throughout the cell cycle, known as the constitutive centromere-associated network (CCAN). In contrast, only one additional constitutive centromeric protein is known in Drosophila melanogaster (D.mel), the conserved CCAN member CENP-C. To gain further insights into D.mel centromere composition and biology, we analyzed affinity-purified chromatin prepared from D.mel cell lines expressing green fluorescent protein tagged histone three variants by MS. In addition to already-known centromeric proteins, we identified novel factors that were repeatedly enriched in affinity purification-MS experiments. We analyzed the cellular localization of selected candidates by immunocytochemistry and confirmed localization to the centromere and other genomic regions for ten factors. Furthermore, RNA interference mediated depletion of CG2051, CG14480, and hyperplastic discs, three of our strongest candidates, leads to elevated mitotic defects. Knockdowns of these candidates neither impair the localization of several known kinetochore proteins nor CENP-A(CID) loading, suggesting their involvement in alternative pathways that contribute to proper centromere function. In summary, we provide a comprehensive analysis of the proteomic composition of Drosophila centromeres. All MS data have been deposited in the ProteomeXchange with identifier PXD000758 (http://proteomecentral.proteomexchange.org/dataset/PXD000758).


Asunto(s)
Centrómero/química , Proteínas Cromosómicas no Histona/química , Proteínas de Drosophila/química , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Cinetocoros/metabolismo , Microscopía Fluorescente
10.
J Biol Chem ; 289(9): 6091-7, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24425865

RESUMEN

The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate the clock. Here we demonstrate that the circadian clock regulates the intracellular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase 1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock and the NAD(+)-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Relojes Circadianos/fisiología , Ácidos Grasos/biosíntesis , Sirtuina 1/metabolismo , Acetato CoA Ligasa/genética , Acetilación , Animales , Células Cultivadas , Ácidos Grasos/genética , Ratones , Ratones Noqueados , NAD/genética , NAD/metabolismo , Sirtuina 1/genética
11.
Trends Biochem Sci ; 35(11): 618-26, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20685123

RESUMEN

Most multi-cellular organisms adopt a specific gene expression pattern during cellular differentiation. Once established, this pattern is frequently maintained over several cell divisions despite the fact that the initiating signal is no longer present. Differential packaging into chromatin is one such mechanism that allows fixation of transcriptional activity. Recent genome-wide studies demonstrate that actively transcribed regions are characterized by a specific modification pattern of histones, the main protein component of chromatin. These findings support the hypothesis that a histone code uses histone post-translational modifications to stably inscribe particular chromatin structures into the genome. Experiments on the dynamics of histone modifications reveal a striking kinetic difference between methylation, phosphorylation and acetylation, suggesting different roles of these modifications in epigenetically fixing specific gene expression patterns.


Asunto(s)
Histonas/metabolismo , Transducción de Señal , Animales , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Transcripción Genética
12.
Nucleic Acids Res ; 37(15): 5032-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19541851

RESUMEN

Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin 'matures' and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine ((15)N(4)) that is 4 Da heavier than the naturally occurring (14)N(4) isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Ciclo Celular , Células HeLa , Histonas/biosíntesis , Humanos , Cinética , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...