Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38717592

RESUMEN

PURPOSE: [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS: In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS: AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION: Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.

2.
J Nucl Med ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575191

RESUMEN

We used a new data-driven methodology to identify a set of reference regions that enhanced the quantification of the SUV ratio of the second-generation tau tracer 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine ([18F]PI-2620) in a group of patients clinically diagnosed with 4-repeat tauopathy, specifically progressive supranuclear palsy or cortical basal syndrome. The study found that SUV ratios calculated using the identified reference regions (i.e., fusiform gyrus and crus-cerebellum) were significantly associated with symptom severity and disease duration. This establishes, for the first time to our knowledge, the suitability of [18F]PI-2620 for tracking disease progression in this 4-repeat disease population. This is an important step toward increased clinical utility, such as patient stratification and monitoring in disease-modifying treatment trials. Additionally, the applied methodology successfully optimized reference regions for automated detection of brain imaging tracers. This approach may also hold value for other brain imaging tracers.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38366196

RESUMEN

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38393374

RESUMEN

Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.

7.
Elife ; 132024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224473

RESUMEN

Background: Aside to clinical changes, behavioral variant frontotemporal dementia (bvFTD) is characterized by progressive structural and functional alterations in frontal and temporal regions. We examined if there is a selective vulnerability of specific neurotransmitter systems in bvFTD by evaluating the link between disease-related functional alterations and the spatial distribution of specific neurotransmitter systems and their underlying gene expression levels. Methods: Maps of fractional amplitude of low-frequency fluctuations (fALFF) were derived as a measure of local activity from resting-state functional magnetic resonance imaging for 52 bvFTD patients (mean age = 61.5 ± 10.0 years; 14 females) and 22 healthy controls (HC) (mean age = 63.6 ± 11.9 years; 13 females). We tested if alterations of fALFF in patients co-localize with the non-pathological distribution of specific neurotransmitter systems and their coding mRNA gene expression. Furthermore, we evaluated if the strength of co-localization is associated with the observed clinical symptoms. Results: Patients displayed significantly reduced fALFF in frontotemporal and frontoparietal regions. These alterations co-localized with the distribution of serotonin (5-HT1b and 5-HT2a) and γ-aminobutyric acid type A (GABAa) receptors, the norepinephrine transporter (NET), and their encoding mRNA gene expression. The strength of co-localization with NET was associated with cognitive symptoms and disease severity of bvFTD. Conclusions: Local brain functional activity reductions in bvFTD followed the distribution of specific neurotransmitter systems indicating a selective vulnerability. These findings provide novel insight into the disease mechanisms underlying functional alterations. Our data-driven method opens the road to generate new hypotheses for pharmacological interventions in neurodegenerative diseases even beyond bvFTD. Funding: This study has been supported by the German Consortium for Frontotemporal Lobar Degeneration, funded by the German Federal Ministry of Education and Research (BMBF; grant no. FKZ01GI1007A).


Asunto(s)
Demencia Frontotemporal , Femenino , Humanos , Persona de Mediana Edad , Anciano , Aminas , Serotonina , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , ARN Mensajero , Ácido gamma-Aminobutírico
8.
Neurology ; 102(1): e207901, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165362

RESUMEN

BACKGROUND AND OBJECTIVES: Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurodegenerative disease characterized by declining cognitive and motor functions. Biomarkers for assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein (TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein (GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their association with disease trajectories remains unclear. Therefore, we performed a head-to-head comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers (NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in ß-amyloid (Aß)-negative CBS. METHODS: We included patients with clinically diagnosed Aß-negative CBS with clinical follow-up data who underwent baseline structural MRI and plasma-NfL analysis for assessing neurodegeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal. For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed biomarkers at baseline were associated with faster symptom progression over time (i.e., time × biomarker interaction). RESULTS: Overall, 21 patients with Aß-negative CBS with ∼2-year clinical follow-up data were included. Patients with CBS with more widespread global tau-PET signal showed faster clinical progression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower clinical progression (PSPRS: B/SE = -0.056/0.023, p = 0.019). No association was found between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed significant interaction effects with time on clinical trajectories when tested in the same model. DISCUSSION: [18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients with Aß-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients in clinical trials.


Asunto(s)
Degeneración Corticobasal , Enfermedades Neurodegenerativas , Tauopatías , Humanos , Filamentos Intermedios , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Receptores de GABA
9.
J Nucl Med ; 65(2): 167-173, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071569

RESUMEN

Therapeutic approaches to brain tumors remain a challenge, with considerable limitations regarding delivery of drugs. There has been renewed and increasing interest in translating the popular theranostic approach well known from prostate and neuroendocrine cancer to neurooncology. Although far from perfect, some of these approaches show encouraging preliminary results, such as for meningioma and leptomeningeal spread of certain pediatric brain tumors. In brain metastases and gliomas, clinical results have failed to impress. Perspectives on these theranostic approaches regarding meningiomas, brain metastases, gliomas, and common pediatric brain tumors will be discussed. For each tumor entity, the general context, an overview of the literature, and future perspectives will be provided. Ongoing studies will be discussed in the supplemental materials. As most theranostic agents are unlikely to cross the blood-brain barrier, the delivery of these agents will be dependent on the successful development and clinical implementation of techniques enhancing permeability and retention. Moreover, the international community should strive toward sufficiently large and randomized studies to generate high-level evidence on theranostic approaches with radioligand therapies for central nervous system tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Masculino , Niño , Humanos , Medicina de Precisión , Nanomedicina Teranóstica/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Barrera Hematoencefálica
12.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37655363

RESUMEN

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Humanos , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos , Parálisis Supranuclear Progresiva/diagnóstico
13.
Phenomics ; 3(4): 375-389, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37589025

RESUMEN

Alzheimer's disease (AD) is the main cause of dementia, with its diagnosis and management remaining challenging. Amyloid positron emission tomography (PET) has become increasingly important in medical practice for patients with AD. To integrate and update previous guidelines in the field, a task group of experts of several disciplines from multiple countries was assembled, and they revised and approved the content related to the application of amyloid PET in the medical settings of cognitively impaired individuals, focusing on clinical scenarios, patient preparation, administered activities, as well as image acquisition, processing, interpretation and reporting. In addition, expert opinions, practices, and protocols of prominent research institutions performing research on amyloid PET of dementia are integrated. With the increasing availability of amyloid PET imaging, a complete and standard pipeline for the entire examination process is essential for clinical practice. This international consensus and practice guideline will help to promote proper clinical use of amyloid PET imaging in patients with AD.

14.
Mov Disord ; 38(10): 1891-1900, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37545102

RESUMEN

BACKGROUND: Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). OBJECTIVES: To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients. METHODS: Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry. RESULTS: All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). CONCLUSIONS: Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Encéfalo , Parálisis Supranuclear Progresiva , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Mesencéfalo/patología , Parálisis Supranuclear Progresiva/patología
15.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495886

RESUMEN

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Microglía/patología , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Proteínas tau , Receptores de GABA
16.
Front Neurol ; 14: 1163107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292133

RESUMEN

CSF1 receptor-related leukoencephalopathy is a rare genetic disorder presenting with severe, adult-onset white matter dementia as one of the leading symptoms. Within the central nervous system, the affected CSF1-receptor is expressed exclusively in microglia cells. Growing evidence implicates that replacing the defective microglia with healthy donor cells through hematopoietic stem cell transplant might halt disease progression. Early initiation of that treatment is crucial to limit persistent disability. However, which patients are suitable for this treatment is not clear, and imaging biomarkers that specifically depict lasting structural damage are lacking. In this study, we report on two patients with CSF1R-related leukoencephalopathy in whom allogenic hematopoietic stem cell transplant at advanced disease stages led to clinical stabilization. We compare their disease course with that of two patients admitted in the same timeframe to our hospital, considered too late for treatment, and place our cases in context with the respective literature. We propose that the rate of clinical progression might be a suitable stratification measure for treatment amenability in patients. Furthermore, for the first time we evaluate [18F] florbetaben, a PET tracer known to bind to intact myelin, as a novel MRI-adjunct tool to image white matter damage in CSF1R-related leukoencephalopathy. In conclusion, our data add evidence for allogenic hematopoietic stem cell transplant as a promising treatment in CSF1R-related leukoencephalopathy patients with slow to moderate disease progression.

18.
Neuroimage Clin ; 38: 103402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37087820

RESUMEN

In recent years in vivo visualization of tau deposits has become possible with various PET radiotracers. The tau tracer [18F]PI-2620 proved high affinity both to 3-repeat/4-repeat tau in Alzheimer's disease as well as to 4-repeat tau in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). However, to be clinically relevant, biomarkers should not only correlate with pathological changes but also with disease stage and progression. Therefore, we aimed to investigate the correlation between topology of [18F]PI-2620 uptake and symptomatology in 4-repeat tauopathies. 72 patients with possible or probable 4-repeat tauopathy, i.e. 31 patients with PSP-Richardson's syndrome (PSP-RS), 30 with amyloid-negative CBS and 11 with PSP-non-RS/CBS, underwent [18F]PI-2620-PET. Principal component analysis was performed to identify groups of similar brain regions based on 20-40 min p.i. regional standardized uptake value ratio z-scores. Correlations between component scores and the items of the PSP Rating Scale were explored. Motor signs like gait, arising from chair and postural instability showed a positive correlation with tracer uptake in mesial frontoparietal lobes and the medial superior frontal gyrus and adjacent anterior cingulate cortex. While the signs disorientation and bradyphrenia showed a positive correlation with tracer uptake in the parietooccipital junction, the signs disorientation and arising from chair were negatively correlated with tau-PET signal in the caudate nucleus and thalamus. Total PSP Rating Scale Score showed a trend towards a positive correlation with mesial frontoparietal lobes and a negative correlation with caudate nucleus and thalamus. While in CBS patients, the main finding was a negative correlation of tracer binding in the caudate nucleus and thalamus and a positive correlation of tracer binding in medial frontal cortex with gait and motor signs, in PSP-RS patients various correlations of clinical signs with tracer binding in specific cerebral regions could be detected. Our data reveal [18F]PI-2620 tau-PET topology to correlate with symptomatology in 4-repeat tauopathies. Longitudinal studies will be needed to address whether a deterioration of signs and symptoms over time can be monitored by [18F]PI-2620 in 4-repeat tauopathies and whether [18F]PI-2620 may serve as a marker of disease progression in future therapeutic trials. The detected negative correlation of tracer binding in the caudate nucleus and thalamus with the signs disorientation and arising from chair may be due to an increasing atrophy in these regions leading to partial volume effects and a relative decrease of tracer uptake in the disease course. As cerebral regions correlating with symptomatology differ depending on the clinical phenotype, a precise knowledge of clinical signs and symptoms is necessary when interpreting [18F]PI-2620 PET results.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico , Piridinas , Confusión , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...