Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(11): e0258637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727117

RESUMEN

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Asunto(s)
Antígenos de Protozoos/inmunología , Epítopos de Linfocito B/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Péptidos/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adulto , Secuencia de Aminoácidos , Formación de Anticuerpos/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Epítopos Inmunodominantes/inmunología , Inmunoglobulina G/inmunología , Malaria Vivax/epidemiología , Malaria Vivax/inmunología , Masculino , Persona de Mediana Edad , Péptidos/química , Estructura Secundaria de Proteína
2.
Clin Vaccine Immunol ; 22(11): 1187-96, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26376929

RESUMEN

The serodiagnosis of human tegumentary leishmaniasis (TL) presents some problems, such as the low level of antileishmanial antibodies found in most of the patients, as well as the cross-reactivity in subjects infected by other trypanosomatids. In the present study, an immunoproteomic approach was performed aimed at identification of antigens in total extracts of stationary-phase promastigote and amastigote-like forms of Leishmania (Viannia) braziliensis using sera from TL patients. With the purpose of reducing the cross-reactivity of the identified proteins, spots recognized by sera from TL patients, as well as those recognized by antibodies present in sera from noninfected patients living in areas where TL is endemic and sera from Chagas disease patients, were discarded. Two Leishmania hypothetical proteins and 18 proteins with known functions were identified as antigenic. The study was extended with some of them to validate the results of the immunoscreening. The coding regions of five of the characterized antigens (enolase, tryparedoxin peroxidase, eukaryotic initiation factor 5a, ß-tubulin, and one of the hypothetical proteins) were cloned in a prokaryotic expression vector, and the corresponding recombinant proteins were purified and evaluated for the serodiagnosis of TL. The antigens presented sensitivity and specificity values ranging from 95.4 to 100% and 82.5 to 100%, respectively. As a comparative antigen, a preparation of Leishmania extract showed sensitivity and specificity values of 65.1 and 57.5%, respectively. The present study has enabled the identification of proteins able to be employed for the serodiagnosis of TL.


Asunto(s)
Proteínas Bacterianas/inmunología , Leishmania braziliensis/inmunología , Leishmaniasis Cutánea/diagnóstico , Adulto , Anciano , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Leishmania braziliensis/química , Leishmania braziliensis/genética , Leishmaniasis Cutánea/inmunología , Masculino , Persona de Mediana Edad , Peroxidasas/genética , Proteómica/métodos , Proteínas Protozoarias/genética , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad , Pruebas Serológicas/métodos
3.
PLoS One ; 6(4): e18551, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21533164

RESUMEN

BACKGROUND: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. METHODOLOGY AND FINDINGS: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. CONCLUSIONS: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Asunto(s)
Corynebacterium pseudotuberculosis/patogenicidad , Evolución Molecular , Genoma Bacteriano , Virulencia/genética , Corynebacterium pseudotuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...