Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 119(3): 705-716, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697975

RESUMEN

The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.


Asunto(s)
Simulación de Dinámica Molecular , Bases de Schiff , Channelrhodopsins , Transferencia de Energía , Enlace de Hidrógeno
2.
Biochemistry ; 58(9): 1275-1286, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30702875

RESUMEN

In recent years, gating and transient ion-pathway formation in the light-gated channelrhodopsins (ChRs) have been intensively studied. Despite these efforts, a profound understanding of the mechanistic details is still lacking. To track structural changes concomitant with the formation and subsequent collapse of the ion-conducting pore, we site-specifically introduced the artificial polarity-sensing probe p-azido-l-phenylalanine (azF) into several ChRs by amber stop codon suppression. The frequently used optogenetic actuator ReaChR (red-activatable ChR) exhibited the best expression properties of the wild type and the azF mutants. By exploiting the unique infrared spectral absorption of azF [νas(N3) ∼ 2100 cm-1] and its sensitivity to polarity changes, we monitored hydration changes at various sites of the pore region and the inner gate by stationary and time-resolved infrared spectroscopy. Our data imply that channel closure coincides with a dehydration event occurring between the interface of the central and the inner gate. In contrast, the extracellular ion pathway seems to be hydrated in the open and closed states to similar extents. Mutagenesis of sites in the inner gate suggests that it acts as an intracellular entry funnel, whose architecture and composition modulate water influx and efflux within the channel pore. Our results highlight the potential of genetic code expansion technology combined with biophysical methods to investigate channel gating, particularly hydration dynamics at specific sites, with a so far unprecedented spatial resolution.


Asunto(s)
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Azidas/química , Channelrhodopsins/genética , Codón de Terminación , Células HEK293 , Humanos , Sondas Moleculares/química , Mutagénesis Sitio-Dirigida , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Biol Chem ; 293(12): 4403-4410, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29363577

RESUMEN

Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (Gt) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the Gt α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, Gt α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Rodopsina/química , Rodopsina/metabolismo , Cristalografía por Rayos X , Humanos , Fosforilación , Unión Proteica , Transducción de Señal
4.
J Biol Chem ; 292(34): 14205-14216, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28659342

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Rodopsina/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Sustitución de Aminoácidos , Dominio Catalítico/efectos de la radiación , Chlamydomonas reinhardtii/efectos de la radiación , Chlorophyta/efectos de la radiación , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Enlace de Hidrógeno/efectos de la radiación , Luz , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica/efectos de la radiación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Espectroscopía Infrarroja por Transformada de Fourier
5.
Biophys J ; 112(6): 1166-1175, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355544

RESUMEN

Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λmax = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λmax = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C15=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M2) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C13=C14, C15=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C13=C14 double-bond isomerization.


Asunto(s)
Absorción de Radiación , Procesos Fotoquímicos , Rodopsina/química , Rodopsina/metabolismo , Color , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Front Mol Biosci ; 2: 38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217670

RESUMEN

Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.

7.
J Biol Chem ; 290(33): 20117-27, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26105054

RESUMEN

Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences.


Asunto(s)
Rodopsina/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Rodopsina/química , Homología de Secuencia de Aminoácido , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Biol Chem ; 290(20): 12919-28, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25847250

RESUMEN

In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of ß-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.


Asunto(s)
Arrestina/química , Membrana Celular/química , Complejos Multiproteicos/química , Rodopsina/química , Animales , Arrestina/genética , Arrestina/metabolismo , Bovinos , Membrana Celular/genética , Membrana Celular/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Estabilidad Proteica , Rodopsina/genética , Rodopsina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
9.
Nat Commun ; 5: 4801, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25205354

RESUMEN

G-protein-coupled receptors (GPCRs) transmit extracellular signals to activate intracellular heterotrimeric G proteins (Gαßγ) and arrestins. For G protein signalling, the Gα C-terminus (GαCT) binds to a cytoplasmic crevice of the receptor that opens upon activation. A consensus motif is shared among GαCT from the Gi/Gt family and the 'finger loop' region (ArrFL1-4) of all four arrestins. Here we present a 2.75 Å crystal structure of ArrFL-1, a peptide analogue of the finger loop of rod photoreceptor arrestin, in complex with the prototypical GPCR rhodopsin. Functional binding of ArrFL to the receptor was confirmed by ultraviolet-visible absorption spectroscopy, competitive binding assays and Fourier transform infrared spectroscopy. For both GαCT and ArrFL, binding to the receptor crevice induces a similar reverse turn structure, although significant structural differences are seen at the rim of the binding crevice. Our results reflect both the common receptor-binding interface and the divergent biological functions of G proteins and arrestins.


Asunto(s)
Arrestinas/metabolismo , Unión Competitiva , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Rodopsina/metabolismo , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
10.
J Am Chem Soc ; 135(33): 12305-12, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23883288

RESUMEN

The G protein coupled receptor (GPCR) rhodopsin activates the heterotrimeric G protein transducin (Gt) to transmit the light signal into retinal rod cells. The rhodopsin activity is virtually zero in the dark and jumps by more than one billion fold after photon capture. Such perfect switching implies both high fidelity and speed of rhodopsin/Gt coupling. We employed Fourier transform infrared (FTIR) spectroscopy and supporting all-atom molecular dynamics (MD) simulations to study the conformational diversity of rhodopsin in membrane environment and extend the static picture provided by the available crystal structures. The FTIR results show how the equilibria of inactive and active protein states of the receptor (so-called metarhodopsin states) are regulated by the highly conserved E(D)RY and Yx7K(R) motives. The MD data identify an intrinsically unstructured cytoplasmic loop region connecting transmembrane helices 5 and 6 (CL3) and show how each protein state is split into conformational substates. The C-termini of the Gtγ- and Gtα-subunits (GαCT and GγCT), prepared as synthetic peptides, are likely to bind sequentially and at different sites of the active receptor. The peptides have different effects on the receptor conformation. While GγCT stabilizes the active states but preserves CL3 flexibility, GαCT selectively stabilizes a single conformational substate with largely helical CL3, as it is found in crystal structures. Based on these results we propose a mechanism for the fast and precise signal transfer from rhodopsin to Gt, which assumes a stepwise and mutual reduction of their conformational space. The mechanism relies on conserved amino acids and may therefore underlie GPCR/G protein coupling in general.


Asunto(s)
Rodopsina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Conformación Proteica , Rodopsina/agonistas , Rodopsina/química , Rodopsina/genética , Espectroscopía Infrarroja por Transformada de Fourier , Transducina/química
11.
J Biol Chem ; 288(15): 10451-8, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23439646

RESUMEN

Channelrhodopsins are microbial type rhodopsins that operate as light-gated ion channels. Largely prolonged lifetimes of the conducting state of channelrhodopsin-2 may be achieved by mutations of crucial single amino acids, i.e. cysteine 128. Such mutants are of great scientific interest in the field of neurophysiology because they allow neurons to be switched on and off on demand (step function rhodopsins). Due to their slow photocycle, structural alterations of these proteins can be studied by vibrational spectroscopy in more detail than possible with wild type. Here, we present spectroscopic evidence that the photocycle of the C128T mutant involves three different dark-adapted states that are populated according to the wavelength and duration of the preceding illumination. Our results suggest an important role of multiphoton reactions and the previously described side reaction for dark state regeneration. Structural changes that cause formation and depletion of the assumed ion conducting state P520 are only small and follow larger changes that occur early and late in the photocycle, respectively. They require only minor structural rearrangements of amino acids near the retinal binding pocket and are triggered by all-trans/13-cis retinal isomerization, although additional isomerizations are also involved in the photocycle. We will discuss an extended photocycle model of this mutant on the basis of spectroscopic and electrophysiological data.


Asunto(s)
Adaptación a la Oscuridad/fisiología , Mutación Missense , Retinaldehído/metabolismo , Rodopsina/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Retinaldehído/genética , Rodopsina/genética
12.
J Am Chem Soc ; 133(18): 7159-65, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21506561

RESUMEN

Rhodopsin, a seven transmembrane helix (TM) receptor, binds its ligand 11-cis-retinal via a protonated Schiff base. Coupling to the G-protein transducin (G(t)) occurs after light-induced cis/trans-retinal isomerization, which leads through photoproducts into a sequence of metarhodopsin (Meta) states: Meta I ⇌ Meta IIa ⇌ Meta IIb ⇌ Meta IIbH(+). The structural changes behind this three-step activation scheme are mediated by microswitch domains consisting of conserved amino acids. Here we focus on Tyr223(5.58) as part of the Y(5.58)X(7)K(R)(5.66) motif. Mutation to Ala, Phe, or Glu results in specific impairments of G(t)-activation measured by intrinsic G(t) fluorescence. UV-vis/FTIR spectroscopy of rhodopsin and its complex with a C-terminal G(t)α peptide allows the assignment of these deficiencies to specific steps in the activation path. Effects of mutation occur already in Meta I but do not directly influence deprotonation of the Schiff base during formation of Meta IIa. Absence of the whole phenol ring (Y223A) allows the activating motion of TM6 in Meta IIb but impairs the coupling to G(t). When only the hydroxyl group is lacking (Y223F), Meta IIb does not accumulate, but the activity toward G(t) remains substantial. From the FTIR features of Meta IIbH(+) we conclude that proton uptake to Glu134(3.49) is mandatory for Tyr223(5.58) to engage in the interaction with the key player Arg135(3.50) predicted by X-ray analysis. This polar interaction is partially recovered in Y223E, explaining its relatively high activity. Only the phenol side chain of tyrosine provides all characteristics for accumulation of the active state and G-protein activation.


Asunto(s)
Secuencia Conservada , Rodopsina/agonistas , Rodopsina/química , Transducina/química , Tirosina/química , Secuencia de Aminoácidos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Retinaldehído/química , Rodopsina/genética , Espectroscopía Infrarroja por Transformada de Fourier , Tirosina/genética
13.
J Biol Chem ; 283(50): 35033-41, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18927082

RESUMEN

Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.


Asunto(s)
Rodopsina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Células COS , Chlamydomonas/metabolismo , Chlorocebus aethiops , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Luz , Estructura Terciaria de Proteína , Proteínas/química , Espectrofotometría Ultravioleta/métodos , Factores de Tiempo , Rayos Ultravioleta
14.
Photochem Photobiol ; 84(4): 911-20, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18422873

RESUMEN

Rhodopsin, the visual pigment of the rod photoreceptor cell contains as its light-sensitive cofactor 11-cis retinal, which is bound by a protonated Schiff base between its aldehyde group and the Lys296 side chain of the apoprotein. Light activation is achieved by 11-cis to all-trans isomerization and subsequent thermal relaxation into the active, G protein-binding metarhodopsin II state. Metarhodopsin II decays via two parallel pathways, which both involve hydrolysis of the Schiff base eventually to opsin and released all-trans retinal. Subsequently, rhodopsin's dark state is regenerated by a complicated retinal metabolism, termed the retinoid cycle. Unlike other retinal proteins, such as bacteriorhodopsin, this regeneration cycle cannot be short cut by light, because blue illumination of active metarhodopsin II does not lead back to the ground state but to the formation of largely inactive metarhodopsin III. In this review, mechanistic details of activating and deactivating pathways of rhodopsin, particularly concerning the roles of the retinal, are compared. Based on static and time-resolved UV/Vis and FTIR spectroscopic data, we discuss a model of the light-induced deactivation. We describe properties and photoreactions of metarhodopsin III and suggest potential roles of this intermediate for vision.


Asunto(s)
Retinaldehído/fisiología , Animales , Humanos , Luz , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinaldehído/química , Rodopsina/química , Rodopsina/fisiología , Rodopsina/efectos de la radiación , Espectrofotometría
15.
Phys Chem Chem Phys ; 9(14): 1648-58, 2007 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-17396175

RESUMEN

The activation of rhodopsin has been the focus of researchers over the past decades, revealing many aspects of the activation pathways of this prototypical G protein-coupled receptor on a molecular level, starting with the light-dependent isomerization of its retinal chromophore from 11-cis to all-trans and leading eventually to the large scale helix movements in the transition to the active receptor state, Meta II. Comparatively little is known, however, on the deactivation pathways of the light receptor, which represent essential steps in maintaining a functional photoreceptor cell. Rhodopsin's active receptor species, Meta II, decays by two fundamentally different pathways, either forming the apoprotein opsin by release of the activating all-trans retinal ligand from its binding pocket, or by a thermal isomerization of this ligand to a less activating species in the transition to metarhodopsin III (Meta III). Both decay products, opsin and Meta III, are largely inactive under physiological conditions, yet they do not restore the complete inactivity of the dark state. Although some properties of Meta III have been described already in the 1960s, its molecular nature and the pathways of its formation have remained rather obscure. In this review, we focus on recent studies from our laboratories, which have provided a major progress in our understanding of the Meta III deactivation pathway and its potential physiological roles. Using Fourier-transform infrared (FTIR) difference spectroscopy in combination with a variety of other spectroscopic and biochemical techniques and quantum chemical calculations, we have developed a general picture of the interplay between the retinal ligand and the receptor protein, which is compared to similar reaction mechanisms in invertebrate photoreceptors and microbial retinal proteins.


Asunto(s)
Rodopsina/química , Fluorescencia , Concentración de Iones de Hidrógeno , Ligandos , Luz , Estructura Molecular , Rodopsina/efectos de la radiación , Sensibilidad y Especificidad , Espectrofotometría/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estereoisomerismo
16.
J Biol Chem ; 282(14): 10720-30, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17287211

RESUMEN

Vertebrate rhodopsin shares with other retinal proteins the 11-cis-retinal chromophore and the light-induced 11-cis/trans isomerization triggering its activation pathway. However, only in rhodopsin the retinylidene Schiff base bond to the apoprotein is eventually hydrolyzed, making a complex regeneration pathway necessary. Metabolic regeneration cannot be short-cut, and light absorption in the active metarhodopsin (Meta) II intermediate causes anti/syn isomerization around the retinylidene linkage rather than reversed trans/cis isomerization. A new deactivating pathway is thereby triggered, which ends in the Meta III "retinal storage" product. Using time-resolved Fourier transform infrared spectroscopy, we show that the identified steps of receptor activation, including Schiff base deprotonation, protein structural changes, and proton uptake by the apoprotein, are all reversed. However, Schiff base reprotonation is much faster than the activating deprotonation, whereas the protein structural changes are slower. The final proton release occurs with pK approximately 4.5, similar to the pK of a free Glu residue and to the pK at which the isolated opsin apoprotein becomes active. A forced deprotonation, equivalent to the forced protonation in the activating pathway, which occurs against the unfavorable pH of the medium, is not observed. This explains properties of the final Meta III product, which displays much higher residual activity and is less stable than rhodopsin arising from regeneration with 11-cis-retinal. We propose that the anti/syn conversion can only induce a fast reorientation and distance change of the Schiff base but fails to build up the full set of dark ground state constraints, presumably involving the Glu(134)/Arg(135) cluster.


Asunto(s)
Apoproteínas/química , Luz , Modelos Químicos , Protones , Retinaldehído/química , Rodopsina/química , Animales , Bovinos , Isomerismo , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Biol Chem ; 280(40): 34259-67, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16027155

RESUMEN

The visual process in rod cells is initiated by absorption of a photon in the rhodopsin retinal chromophore and consequent retinal cis/trans-isomerization. The ring structure of retinal is thought to be needed to transmit the photonic energy into conformational changes culminating in the active metarhodopsin II (Meta II) intermediate. Here, we demonstrate that cis-acyclic retinals, lacking four carbon atoms of the ring, can activate rhodopsin. Detailed analysis of the activation pathway showed that, although the photoproduct pathway is more complex, Meta II formed with almost normal kinetics. However, lack of the ring structure resulted in a low amount of Meta II and a fast decay of activity. We conclude that the main role of the ring structure is to maintain the active state, thus specifying a mechanism of activation by a partial agonist of the G protein-coupled receptor rhodopsin.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiología , Retina/ultraestructura , Rodopsina/metabolismo , Animales , Células COS , Chlorocebus aethiops , Isomerismo , Cinética , Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinaldehído/metabolismo , Opsinas de Bastones/metabolismo
18.
J Biol Chem ; 279(46): 48102-11, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15322129

RESUMEN

Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.


Asunto(s)
Luz , Rodopsina/análogos & derivados , Rodopsina/química , Bases de Schiff/química , Animales , Bovinos , Deuterio/química , Isomerismo , Fotoquímica , Conformación Proteica , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsina/metabolismo , Bases de Schiff/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
19.
J Biol Chem ; 279(46): 48112-9, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15322130

RESUMEN

In the phototransduction pathway of rhodopsin, the metarhodopsin (Meta) III retinal storage form arises from the active G-protein binding Meta II by a slow spontaneous reaction through the Meta I precursor or by light absorption and photoisomerization, respectively. Meta III is a side product of the Meta II decay path and holds its retinal in the original binding site, with the Schiff base bond to the apoprotein reprotonated as in the dark ground state. It thus keeps the retinal away from the regeneration pathway in which the photolyzed all-trans-retinal is released. This study was motivated by our recent observation that Meta III remains stable for hours in membranes devoid of regulatory proteins, whereas it decays much more rapidly in situ. We have now explored the possibility of regulated formation and decay of Meta III, using intrinsic opsin tryptophan fluorescence and UV-visible and Fourier transform infrared spectroscopy. We find that a rapid return of Meta III into the regeneration pathway is triggered by the G-protein transducin (G(t)). Depletion of the retinal storage is initiated by a novel direct bimolecular interaction of G(t) with Meta III, which was previously considered inactive. G(t) thereby induces the transition of Meta III into Meta II, so that the retinylidene bond to the apoprotein can be hydrolyzed, and the retinal can participate again in the normal retinoid cycle. Beyond the potential significance for retinoid metabolism, this may provide the first example of a G-protein-catalyzed conversion of a receptor.


Asunto(s)
Rodopsina/análogos & derivados , Rodopsina/metabolismo , Transducina/metabolismo , Animales , Bovinos , Membrana Celular/metabolismo , Guanosina Difosfato/metabolismo , Concentración de Iones de Hidrógeno , Luz , Péptidos/metabolismo , Células Fotorreceptoras Retinianas Bastones/química , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
20.
J Biol Chem ; 278(5): 3162-9, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12427735

RESUMEN

Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is stored away, thus regulating photoreceptor regeneration.


Asunto(s)
Luz , Células Fotorreceptoras Retinianas Bastones/fisiología , Rodopsina/análogos & derivados , Rodopsina/fisiología , Transducción de Señal/fisiología , Animales , Bovinos , Isomerismo , Cinética , Modelos Moleculares , Fotoquímica , Estructura Secundaria de Proteína , Retinaldehído/metabolismo , Opsinas de Bastones/metabolismo , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...