Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 213(2): 214-225, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38829123

RESUMEN

The interactions between chemokines and their receptors, particularly in the context of inflammation, are complex, with individual receptors binding multiple ligands and individual ligands interacting with multiple receptors. In addition, there are numerous reports of simultaneous coexpression of multiple inflammatory chemokine receptors on individual inflammatory leukocyte subtypes. Overall, this has previously been interpreted as redundancy and proposed as a protective mechanism to ensure that the inflammatory response is robust. By contrast, we have hypothesized that the system is not redundant but exquisitely subtle. Our interests relate to the receptors CCR1, CCR2, CCR3, and CCR5, which, together, regulate nonneutrophilic myeloid cell recruitment to inflammatory sites. In this study, we demonstrate that although most murine monocytes exclusively express CCR2, there is a small subpopulation that is expanded during inflammation and coexpresses CCR1 and CCR2. Combinations of transcript and functional analysis demonstrate that this is not redundant expression and that coexpression of CCR1 and CCR2 marks a phenotypically distinct population of monocytes characterized by expression of genes otherwise typically associated with neutrophils. Single-cell RNA sequencing confirms this as a monodisperse population of atypical monocytes. This monocytic population has previously been described as having immunosuppressive activity. Overall, our data confirm combinatorial chemokine receptor expression by a subpopulation of monocytes but demonstrate that this is not redundant expression and marks a discrete monocytic population.


Asunto(s)
Monocitos , Receptores CCR1 , Receptores CCR2 , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Inflamación/inmunología
2.
Transl Oncol ; 42: 101891, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310685

RESUMEN

Renal cell carcinoma (RCC) is a common malignancy frequently diagnosed at the metastatic stage. We performed a comprehensive analysis of the tumor immune microenvironment (TIME) in RCC patients, including the peritumoral tissue microenvironment, to characterize the phenotypic patterns and functional characteristics of infiltrating immune cells. T cells from various compartments (peripheral blood, tumor, peritumoral area, and adjacent healthy renal tissue) were assessed using flow cytometry and Luminex analyses, both before and after T cell-specific stimulation, to evaluate activation status and migratory potential. Our findings demonstrated that tumor-infiltrating lymphocytes (TILs) exhibited heightened cytokine production compared to peritumoral T cells (pTILs), acting as the primary source of cytotoxic markers (IFN-γ, granzyme B, and FasL). CD8+ T cells primarily employed Fas Ligand for cytotoxicity, while CD4+ T cells relied on CD107a. In addition, a statistically significant negative correlation between patient mortality and the presence of CD4+CD107+ pTILs was demonstrated. The engagement with the PD-1/PD-L1 pathway was also more evident in CD4+ and CD8+ pTILs as opposed to TILs. PD-L1 expression in the non-leukocyte fraction of the tumor tissue was relatively lower than in their leukocytic counterparts and upon stimulation, peripheral blood T cells displayed much stronger responses to stimulation than TILs and pTILs. Our results suggest that tumor and peritumoral T cells exhibit limited responsiveness to additional activation signals, while peripheral T cells retain their capacity to respond to stimulatory signals.

3.
Clin Sci (Lond) ; 137(15): 1067-1093, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37530555

RESUMEN

Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.


Asunto(s)
Citocinas , Macrófagos , Humanos , Fenotipo , Inflamación , Diferenciación Celular
4.
Pharmacology ; 108(3): 274-285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996792

RESUMEN

INTRODUCTION: Soft tissue sarcomas (STSs) are malignant tumors arising from mesenchymal tissues. Patients with advanced and metastatic STSs have low overall survival rates and relatively limited treatment options. Oncostatin M (OSM) is a pleiotropic cytokine that was shown to carry both pro- and anti-tumorigenic properties in various cancer types. However, the role of OSM in STSs has not yet been elucidated. Moreover, the potential additive effects of combining OSM and anti-PD-1 therapy have not been carried out so far. METHODS: The aim of this study was to determine the effects of in vitro OSM administration on liposarcoma, leiomyosarcoma, and myxofibrosarcoma immune cells isolated from peripheral blood and tumor tissues and the potential cooperative nature of OSM and nivolumab in treating these STSs. We designed a cohort study to explore novel histology-driven therapies in our target STSs. The immune cells were isolated from the peripheral blood and tumors of patients with STS, and the proportions and phenotypes of immune cells were evaluated with flow cytometry after cultivation with therapeutic monoclonal antibodies. RESULTS: The proportion of peripheral CD45+ cells was not affected by OSM but was significantly increased by nivolumab, whereas both treatments had an effect on CD8+ T cells. In tumor tissues, CD8+ T cell and CD45‒ TRAIL+ cell cultures were boosted by nivolumab and significantly enriched by OSM. Our data suggest that OSM may play a role in the treatment of leiomyosarcoma, myxofibrosarcoma, and liposarcoma. CONCLUSION: In conclusion, the biological efficacy of OSM is reflected in the tumor microenvironment rather than in the peripheral blood of the patients in our cohort, and nivolumab could potentiate its mechanism of action in selected cases. Nevertheless, more histotype-tailored studies are needed to fully understand the functions of OSM in STSs.


Asunto(s)
Leiomiosarcoma , Liposarcoma , Humanos , Oncostatina M/farmacología , Oncostatina M/metabolismo , Nivolumab/farmacología , Nivolumab/uso terapéutico , Estudios de Cohortes , Linfocitos T/metabolismo , Microambiente Tumoral
5.
J Cancer Res Clin Oncol ; 149(7): 3789-3801, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35986756

RESUMEN

PURPOSE: The treatment options for metastatic soft tissue sarcomas (STSs) are limited. In most cases, immunotherapy with immune checkpoint inhibitors has not been successful so far. Macrophages dominate the immune landscape of STSs; thus, combinatorial strategies aiming at both tumor-infiltrating lymphocytes and macrophages may represent a particularly relevant treatment approach for metastatic or recurrent STSs. METHODS: In this cohort study, 66 patients who underwent surgery for STSs were enrolled. Tumor cells and tumor-infiltrating immune cells were analyzed using flow cytometry and immunohistochemistry. In cell suspensions obtained from surgical resections, human T cells were activated by superparamagnetic polymer beads and cultured at a concentration of 0.3 × 106/µl in the absence or presence of therapeutic monoclonal antibodies (anti-PD-1, anti-CD47, and anti-PD-1 + anti-CD47). Supernatants from cell suspensions were analyzed using multiplex Luminex cytokine bead-based immunoassays. RESULTS: The most profound response to anti-CD47 therapy was observed in an undifferentiated pleiomorphic sarcoma which also displayed high expression of CD47 in the tumor microenvironment. Both anti-PD-1 and anti-CD47 therapies drastically increased the production of pro-inflammatory cytokines in the tumor microenvironment of STSs, but co-administration of both agents did not further increase cytokine secretion. Furthermore, all patient samples treated with a combination of both anti-PD-1 and anti-CD47 antibodies showed a dramatic reduction in cytokine secretion. CONCLUSION: Our findings suggest that anti-PD-1 and anti-CD47 therapies do not enhance each other, and the combined application of anti-PD-1 and anti-CD47 agents in vitro limits rather than potentiates their efficacy.


Asunto(s)
Inmunoterapia , Sarcoma , Humanos , Estudios de Cohortes , Suspensiones , Citocinas/metabolismo , Sarcoma/tratamiento farmacológico , Microambiente Tumoral
6.
Immunohorizons ; 6(11): 743-759, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426967

RESUMEN

Dendritic cells form clusters in vivo, but the mechanism behind this has not been determined. In this article, we demonstrate that monocytes from mice deficient in the chemokine receptors CCR1, CCR2, CCR3, and CCR5 display reduced clustering in vitro, which is associated with impaired dendritic cell and macrophage differentiation. We further show that the differentiating cells themselves produce ligands for these receptors that function, in a redundant manner, to regulate cell clustering. Deletion of, or pharmacological blockade of, more than one of these receptors is required to impair clustering and differentiation. Our data show that chemokines and their receptors support clustering by increasing expression of, and activating, cell-surface integrins, which are associated with cell-cell interactions and, in the context of monocyte differentiation, with reduced expression of Foxp1, a known transcriptional suppressor of monocyte differentiation. Our data therefore provide a mechanism whereby chemokines and their receptors typically found in inflammatory environments can interact to promote murine monocyte differentiation to macrophages and dendritic cells.


Asunto(s)
Macrófagos , Receptores de Quimiocina , Ratones , Animales , Receptores de Quimiocina/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Quimiocinas/metabolismo , Células Dendríticas/metabolismo
7.
BMC Cancer ; 22(1): 1021, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171566

RESUMEN

BACKGROUND: Salivary gland carcinomas (SGC) are extremely rare malignancies with only limited treatment options for the metastatic phase of the disease. Treatment with anti-CD47 antibodies could represent a potent therapy for SGCs by promoting the phagocytic clearance of tumor cells through various mechanisms. However, the efficacy of anti-CD47 therapy is largely dependent on the expression of CD47 within the tumor microenvironment (TME). MATERIALS AND METHODS: In 43 patients with SGC, we were the first to investigate the CD47 expression in both tumor cells and tumor-infiltrating immune cells (TIIC) in the center and periphery of primary tumors. We also correlated the data with the clinicopathological variables of the patients and offered novel insights into the potential effectiveness of anti-CD47 therapy in SGCs. RESULTS: We observed that the CD47+ tumor cells are outnumbered by CD47+ TIICs in mucoepidermoid carcinoma. In the tumor center, the proportion of CD47+ tumor cells was comparable to the proportion of CD47+ TIICs in most histological subtypes. In low-grade tumors, significantly higher expression of CD47 was observed in TIICs in the periphery of the tumor as compared to the center of the tumor. CONCLUSION: The reason for a high expression of 'don't eat me' signals in TIICs in the tumor periphery is unclear. However, we hypothesize that in the tumor periphery, upregulation of CD47 in TIICs could be a mechanism to protect newly recruited leukocytes from macrophage-mediated phagocytosis, while also allowing the removal of old or exhausted leukocytes in the tumor center.


Asunto(s)
Neoplasias de las Glándulas Salivales , Microambiente Tumoral , Antígeno CD47/metabolismo , Línea Celular Tumoral , Humanos , Factores Inmunológicos , Inmunoterapia , Fagocitosis , Neoplasias de las Glándulas Salivales/terapia
8.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699420

RESUMEN

Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally distinct fluorescent reporters mark expression of CCRs 1, 2, 3, and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.


Asunto(s)
Quimiocinas , Inflamación , Animales , Proteínas Portadoras , Quimiocinas/genética , Quimiocinas/metabolismo , Expresión Génica , Inflamación/patología , Ratones
9.
PLoS Biol ; 17(5): e3000287, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31141500

RESUMEN

Atypical chemokine receptor 2 (ACKR2) is a chemokine-scavenging receptor. ACKR2-/-embryos display a reduction in size of a novel, to our knowledge, embryonic skin macrophage population referred to as 'intermediate' cells. CC chemokine receptor 2 (CCR2)-/-embryos display an identical phenotype, indicating that these cells require CCR2 to enable them to populate embryonic skin. Further analysis revealed that ACKR2-/-embryos have higher circulating concentrations of the CCR2 ligand, CC ligand 2 (CCL2); thus, ACKR2 regulates intraembryonic CCL2 levels. We show that ACKR2 is strongly expressed by trophoblasts and that it blocks movement of inflammatory chemokines, such as CCL2, from the maternal decidua into the embryonic circulation. We propose that trophoblastic ACKR2 is responsible for ensuring chemokine compartmentalisation on the maternal decidua, without which chemokines enter the embryonic circulation, disrupting gradients essential for directed intraembryonic cell migration. Overall, therefore, we describe a novel, to our knowledge, molecular mechanism whereby maternal decidual chemokines can function in a compartmentalised fashion without interfering with intraembryonic leukocyte migration. These data suggest similar functions for other atypical chemokine receptors in the placenta and indicate that defects in such receptors may have unanticipated developmental consequences.


Asunto(s)
Quimiocinas/metabolismo , Mamíferos/metabolismo , Placenta/metabolismo , Animales , Movimiento Celular , Decidua/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Embarazo , Receptores de Quimiocina/deficiencia , Receptores de Quimiocina/metabolismo , Piel/embriología , Piel/metabolismo , Transcripción Genética , Saco Vitelino/metabolismo
10.
Immunity ; 50(2): 378-389.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784579

RESUMEN

Currently, we lack an understanding of the individual and combinatorial roles for chemokine receptors in the inflammatory process. We report studies on mice with a compound deletion of Ccr1, Ccr2, Ccr3, and Ccr5, which together control monocytic and eosinophilic recruitment to resting and inflamed sites. Analysis of resting tissues from these mice, and mice deficient in each individual receptor, provides clear evidence for redundant use of these receptors in establishing tissue-resident monocytic cell populations. In contrast, analysis of cellular recruitment to inflamed sites provides evidence of specificity of receptor use for distinct leukocyte subtypes and no indication of comprehensive redundancy. We find no evidence of involvement of any of these receptors in the recruitment of neutrophils or lymphocytes to resting or acutely inflamed tissues. Our data shed important light on combinatorial inflammatory chemokine receptor function and highlight Ccr2 as the primary driver of myelomonocytic cell recruitment in acutely inflamed contexts.


Asunto(s)
Eosinófilos/inmunología , Inflamación/inmunología , Monocitos/inmunología , Receptores CCR/inmunología , Animales , Quimiocinas/inmunología , Quimiocinas/metabolismo , Eosinófilos/metabolismo , Perfilación de la Expresión Génica/métodos , Inflamación/genética , Inflamación/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CCR2/inmunología , Receptores CCR2/metabolismo , Receptores CCR3/inmunología , Receptores CCR3/metabolismo , Receptores CCR5/inmunología , Receptores CCR5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...