Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 31, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263178

RESUMEN

BACKGROUND: Cadherin-17 (CDH17), a marker of differentiation in intestinal cells, binds and activates α2ß1 integrin to promote cell adhesion and proliferation in colorectal cancer (CRC) metastasis. Furthermore, CDH17 associates with p120- and ß-catenin in a manner yet to be fully elucidated. In this report, we explored the molecular mediators involved in this association, their contribution to CRC dissemination and potential therapeutic implications. METHODS: Proteomic and confocal analyses were employed to identify and validate CDH17 interactors. Functional characterization involved the study of proliferation, migration, and invasion in cell lines representative of various phenotypes. Immunohistochemistry was conducted on CRC tissue microarrays (TMA). In vivo animal experiments were carried out for metastatic studies. RESULTS: We found that desmocollin-1 (DSC1), a desmosomal cadherin, interacts with CDH17 via its extracellular domain. DSC1 depletion led to increased or decreased invasion in CRC cells displaying epithelial or mesenchymal phenotype, respectively, in a process mediated by the association with p120-catenin. Down-regulation of DSC1 resulted in an increased expression of p120-catenin isoform 1 in epithelial cells or a shift in cellular location in mesenchymal cells. Opposite results were observed after forced expression of CDH17. DSC1 is highly expressed in budding cells at the leading edge of the tumor and associates with poor prognosis in the stem-like, mesenchymal CRC subtypes, while correlates with a more favorable prognosis in the less-aggressive subtypes. In vivo experiments demonstrated that DSC1 silencing reduced tumor growth, liver homing, and metastasis in CRC mesenchymal cells. Furthermore, a synthetic peptide derived from CDH17, containing the NLV motif, effectively inhibited invasion and liver homing in vivo, opening up new possibilities for the development of novel therapies focused on desmosomal cadherins. CONCLUSIONS: These findings shed light on the multifaceted roles of CDH17, DSC1, and p120-catenin in CRC metastasis, offering insights into potential therapeutic interventions for targeting desmosomal cadherins in poorly-differentiated carcinomas.


Asunto(s)
Neoplasias Colorrectales , Desmocolinas , Animales , Catenina delta , Proteómica , Cadherinas
2.
Cell Death Dis ; 14(11): 742, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963919

RESUMEN

Interleukin 13 receptor alpha 2 (IL13Rα2) is a relevant therapeutic target in glioblastoma (GBM) and other tumors associated with tumor growth and invasion. In a previous study, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) is a key mediator of the IL-13/IL13Rα2 signaling pathway. PTP1B regulates cancer cell invasion through Src activation. However, PTP1B/Src downstream signaling mechanisms that modulate the invasion process remain unclear. In the present research, we have characterized the PTP1B interactome and the PTP1B-associated phosphoproteome after IL-13 treatment, in different cellular contexts, using proteomic strategies. PTP1B was associated with proteins involved in signal transduction, vesicle transport, and with multiple proteins from the NF-κB signaling pathway, including Tenascin-C (TNC). PTP1B participated with NF-κB in TNC-mediated proliferation and invasion. Analysis of the phosphorylation patterns obtained after PTP1B activation with IL-13 showed increased phosphorylation of the transcription factor Schnurri-3 (SHN3), a reported competitor of NF-κB. SHN3 silencing caused a potent inhibition in cell invasion and proliferation, associated with a down-regulation of the Wnt/ß-catenin pathway, an extensive decline of MMP9 expression and the subsequent inhibition of tumor growth and metastasis in mouse models. Regarding clinical value, high expression of SHN3 was associated with poor survival in GBM, showing a significant correlation with the classical and mesenchymal subtypes. In CRC, SHN3 expression showed a preferential association with the mesenchymal subtypes CMS4 and CRIS-B. Moreover, SHN3 expression strongly correlated with IL13Rα2 and MMP9-associated poor prognosis in different cancers. In conclusion, we have uncovered the participation of SNH3 in the IL-13/IL13Rα2/PTP1B pathway to promote tumor growth and invasion. These findings support a potential therapeutic value for SHN3.


Asunto(s)
Subunidad alfa2 del Receptor de Interleucina-13 , Neoplasias , Animales , Ratones , Interleucina-13 , Subunidad alfa2 del Receptor de Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias/genética , FN-kappa B/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteómica
3.
Cells ; 12(21)2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37947626

RESUMEN

SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Fenotipo , Proteómica/métodos
4.
Expert Rev Proteomics ; 20(12): 357-370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37874121

RESUMEN

INTRODUCTION: Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery. AREAS COVERED: In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins. EXPERT OPINION: The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , MicroARNs , Humanos , Proteómica/métodos , Neoplasias Colorrectales/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias , Metástasis de la Neoplasia
5.
J Pathol Clin Res ; 8(6): 495-508, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134447

RESUMEN

The necessity to accurately predict recurrence and clinical outcome in early stage colorectal cancer (CRC) is critical to identify those patients who may benefit from adjuvant chemotherapy. Here, we developed and validated a gene-based risk-score algorithm for patient stratification and personalised treatment in early stage disease based on alterations in the secretion of metastasis-related proteins. A quantitative label-free proteomic analysis of the secretome of highly and poorly metastatic CRC cell lines with different genetic backgrounds revealed 153 differentially secreted proteins (fold-change >5). These changes in the secretome were validated at the transcriptomic level. Starting from 119 up-regulated proteins, a six-gene/protein-based prognostic signature composed of IGFBP3, CD109, LTBP1, PSAP, BMP1, and NPC2 was identified after sequential discovery, training, and validation in four different cohorts. This signature was used to develop a risk-score algorithm, named SEC6, for patient stratification. SEC6 risk-score components showed higher expression in the poor prognosis CRC subtypes: consensus molecular subtype 4 (CMS4), CRIS-B, and stem-like. High expression of the signature was also associated with patients showing dMMR, CIMP+ status, and BRAF mutations. In addition, the SEC6 signature was associated with lower overall survival, progression-free interval, and disease-specific survival in stage II and III patients. SEC6-based risk stratification indicated that 5-FU treatment was beneficial for low-risk patients, whereas only aggressive treatments (FOLFOX and FOLFIRI) provided benefits to high-risk patients in stages II and III. In summary, this novel risk-score demonstrates the value of the secretome compartment as a reliable source for the retrieval of biomarkers with high prognostic and chemotherapy-predictive capacity, providing a potential new tool for tailoring decision-making in patient care.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Biomarcadores de Tumor/análisis , Neoplasias del Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fluorouracilo/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Pronóstico , Proteómica , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Secretoma , Transcriptoma
6.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188802, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36152905

RESUMEN

Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.


Asunto(s)
Glioblastoma , Subunidad alfa2 del Receptor de Interleucina-13 , Glioblastoma/patología , Humanos , Inflamación , Interleucina-13/uso terapéutico , Subunidad alfa2 del Receptor de Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Subunidad alfa2 del Receptor de Interleucina-13/uso terapéutico , Transducción de Señal
7.
Br J Cancer ; 126(11): 1604-1615, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347323

RESUMEN

BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias del Recto , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Hidrocarburos , Inmunohistoquímica , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia
8.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917458

RESUMEN

BACKGROUND: IL13Rα2 is reportedly a promising therapeutic target in different cancers. Still, no specific antagonists have reached the clinics yet. We investigated the use of a IL-13/IL13Rα2 binding motif, called D1, as a new target for the development of therapeutic monoclonal antibodies (mAbs) for colorectal cancer (CRC) metastasis. METHODS: IL13Rα2 D1 peptides were prepared and used for immunization and antibody development. Antibodies were tested for inhibition of cellular invasion through Matrigel using CRC cell lines. Effects of the mAbs on cell signaling, receptor internalization and degradation were determined by western blot and flow cytometry. Swiss nude mice were used for survival analysis after treatment with IL13Rα2-specific mAbs and metastasis development. RESULTS: IL13Rα2 D1 peptides were used to generate highly selective mAbs that blocked IL13/IL13Rα2-mediated SRC activation and cell invasion in colorectal cancer cells. Antibodies also provoked a significant reduction in cell adhesion and proliferation of metastatic cancer cells. Treatment with mAbs impaired the FAK, SRC and PI3K/AKT pathway activation. Blocking effectivity was shown to correlate with the cellular IL13Rα2 expression level. Despite mAb 5.5.4 partially blocked IL-13 mediated receptor internalization from the cancer cell surface it still promotes receptor degradation. Compared with other IL13Rα2-specific antibodies, 5.5.4 exhibited a superior efficacy to inhibit metastatic growth in vivo, providing a complete mouse survival in different conditions, including established metastasis. CONCLUSIONS: Monoclonal antibody 5.5.4 showed a highly selective blocking capacity for the interaction between IL-13 and IL13Rα2 and caused a complete inhibition of liver metastasis in IL13Rα2-positive colorectal cancer cells. This capacity might be potentially applicable to other IL13Rα2-expressing tumors.

9.
Mol Oncol ; 15(7): 1849-1865, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33715292

RESUMEN

Cadherin 6 (CDH6) is significantly overexpressed in advanced ovarian and renal cancers. However, the role of CDH6 in cancer metastasis is largely unclear. Here, we investigated the impact of CDH6 expression on integrin-mediated metastatic progression. CDH6 preferentially bound to αIIbß3 integrin, a platelet receptor scarcely expressed in cancer cells, and this interaction was mediated through the cadherin Arginine-glycine-aspartic acid (RGD) motif. Furthermore, CDH6 and CDH17 were found to interact with α2ß1 in αIIbß3low cells. Transient silencing of CDH6, ITGA2B, or ITGB3 genes caused a significant loss of proliferation, adhesion, invasion, and lung colonization through the downregulation of SRC, FAK, AKT, and ERK signaling. In ovarian and renal cancer cells, integrin αIIbß3 activation appears to be a prerequisite for proper α2ß1 activation. Interaction of αIIbß3 with CDH6, and subsequent αIIbß3 activation, promoted activation of α2ß1 and cell adhesion in ovarian and renal cancer cells. Additionally, monoclonal antibodies specific to the cadherin RGD motif and clinically approved αIIbß3 inhibitors could block pro-metastatic activity in ovarian and renal tumors. In summary, the interaction between CDH6 and αIIbß3 regulates α2ß1-mediated adhesion and invasion of ovarian and renal cancer metastatic cells and constitutes a therapeutic target of broad potential for treating metastatic progression.


Asunto(s)
Neoplasias Renales , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Cadherinas/metabolismo , Adhesión Celular , Femenino , Humanos , Integrina alfa2beta1/metabolismo , Neoplasias Renales/genética , Neoplasias Ováricas , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo
10.
Oncogene ; 39(38): 6085-6098, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32801337

RESUMEN

The mechanistic basis of liver metastasis in colorectal cancer remains poorly understood. We previously reported that the sclerostin domain containing-1 (SOSTDC1) protein is overexpressed in the secretome of metastatic colorectal cancer cells and can inhibit liver homing. Here, we investigated the mechanisms of SOSTDC1 for promoting invasiveness and progression of colorectal cancer liver metastasis. SOSTDC1 inhibition of BMP4 maintains the expression of cancer stem cell traits, including SOX2 and NANOG. Immunoprecipitation and mass spectrometry analyses reveal the association of SOSTDC1 with ALCAM/CD166, which was confirmed by confocal microscopy and competition ELISA. Interaction with ALCAM is mediated by the N-terminal region of SOSTDC1, which contains a sequence similar to the ALCAM-binding motif used by CD6. Knocking down either SOSTDC1 or ALCAM expression, or using blocking antibodies, reduces the invasive activity by inhibiting Src and PI3K/AKT signaling pathways. In addition, ALCAM interacts with the α2ß1 and α1ß1 integrins, providing a possible link to Src activation. Finally, inoculation of SOSTDC1-silenced metastatic cells increases mouse survival by inhibiting liver metastasis. In conclusion, SOSTDC1 promotes invasion and liver metastasis in colorectal cancer, by overcoming BMP4-specific antimetastatic signals and inducing ALCAM-mediated Src and PI3K/AKT activation. These experiments underscore the potential of SOSTDC1 as a therapeutic target in metastatic colorectal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteínas Fetales/metabolismo , Neoplasias Hepáticas/secundario , Actinas/química , Actinas/metabolismo , Animales , Biomarcadores de Tumor , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo
11.
Cancers (Basel) ; 12(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098194

RESUMEN

Background: Interleukin 13 receptor alpha 2 subunit (IL13Rα2) is overexpressed in glioblastoma (GBM), metastatic colorectal cancer (CRC) and ovarian cancer (OC). Here, we investigated the IL13Rα2 interactome searching for novel targets in cancer invasion and metastasis. Methods: The interactome of IL13Rα2 was determined in GBM by using a proteomic analysis and then validated in CRC and OC. Cell signaling was investigated using siRNA interference, protein tyrosine phosphatase-1B (PTP1B) inhibitors and Western blot analysis. Animal models of GBM and metastatic CRC were used for testing PTP1B inhibitors. Results: PTP1B was identified and validated as a mediator of IL13Rα2 signaling. An in silico analysis revealed that PTP1B overexpression is associated with lower overall survival of patients in the three types of cancer. PTP1B silencing or treatment with Claramine, a PTP1B inhibitor, caused a significant decrease in IL-13-mediated adhesion, migration and invasion of IL13Rα2-expressing cancer cells by inhibiting the dephosphorylation of Src Tyr530 and consequently, the phosphorylation of Src Tyr419, AKT and ERK1/2. In addition, Claramine inhibited EGF-mediated activation of EGFR Tyr1068. In vivo treatment with Claramine caused a total inhibition of liver metastasis in mice inoculated with CRC cells and a significant increase in the survival of mice bearing intracranial GBM patient-derived xenografts. Conclusions: We have uncovered that IL13 signaling through IL13Rα2 requires PTP1B activity and therefore, PTP1B inhibition represents a promising therapeutic strategy in multiple types of cancer, including glioblastoma.

12.
Carcinogenesis ; 41(2): 203-213, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-31095674

RESUMEN

Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased ß-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/ß-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias Colorrectales/patología , Lectinas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Vía de Señalización Wnt , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Aneuploidia , Línea Celular Tumoral , Colon/patología , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intercelular , Lectinas/genética , Hígado/patología , Neoplasias Hepáticas/secundario , Mapeo de Interacción de Proteínas , Proteómica , Recto/patología , Regulación hacia Arriba
13.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324051

RESUMEN

Cell-cell adhesion molecules (cadherins) and cell-extracellular matrix adhesion proteins (integrins) play a critical role in the regulation of cancer invasion and metastasis. Although significant progress has been made in the characterization of multiple members of the cadherin superfamily, most of the published work continues to focus in the switch E-/N-cadherin and its role in the epithelial-mesenchymal transition. Here, we will discuss the structural and functional properties of a subset of cadherins (cadherin 17, cadherin 5 and cadherin 6) that have an RGD motif in the extracellular domains. This RGD motif is critical for the interaction with α2ß1 integrin and posterior integrin pathway activation in cancer metastatic cells. However, other signaling pathways seem to be affected by RGD cadherin interactions, as will be discussed. The range of solid tumors with overexpression or "de novo" expression of one or more of these three cadherins is very wide (gastrointestinal, gynaecological and melanoma, among others), underscoring the relevance of these cadherins in cancer metastasis. Finally, we will discuss different evidences that support the therapeutic use of these cadherins by blocking their capacity to work as integrin ligands in order to develop new cures for metastatic patients.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Neoplasias/metabolismo , Humanos , Transducción de Señal/fisiología
14.
Cell Death Dis ; 10(2): 51, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30718520

RESUMEN

Glioblastoma (GBM) is the most common and aggressive brain tumor and is associated with poor prognosis. GBM cells are frequently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and finding new combinatorial therapies to sensitize glioma cells to TRAIL remains an important challenge. PIM kinases are serine/threonine kinases that promote cell survival and proliferation and are highly expressed in different tumors. In this work, we studied the role of PIM kinases as regulators of TRAIL sensitivity in GBM cells. Remarkably, PIM inhibition or knockdown facilitated activation by TRAIL of a TRAIL-R2/DR5-mediated and mitochondria-operated apoptotic pathway in TRAIL-resistant GBM cells. The sensitizing effect of PIM knockdown on TRAIL-induced apoptosis was mediated by enhanced caspase-8 recruitment to and activation at the death-inducing signaling complex (DISC). Interestingly, TRAIL-induced internalization of TRAIL-R2/DR5 was significantly reduced in PIM knockdown cells. Phospho-proteome profiling revealed a decreased phosphorylation of p62/SQSTM1 after PIM knockdown. Our results also showed an interaction between p62/SQSTM1 and the DISC that was reverted after PIM knockdown. In line with this, p62/SQSTM1 ablation increased TRAIL-R2/DR5 levels and facilitated TRAIL-induced caspase-8 activation, revealing an inhibitory role of p62/SQSTM1 in TRAIL-mediated apoptosis in GBM. Conversely, upregulation of TRAIL-R2/DR5 upon PIM inhibition and apoptosis induced by the combination of PIM inhibitor and TRAIL were abrogated by a constitutively phosphorylated p62/SQSTM1S332E mutant. Globally, our data represent the first evidence that PIM kinases regulate TRAIL-induced apoptosis in GBM and identify a specific role of p62/SQSTM1Ser332 phosphorylation in the regulation of the extrinsic apoptosis pathway activated by TRAIL.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Transfección
15.
Br J Cancer ; 119(8): 940-949, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318506

RESUMEN

BACKGROUND: Interleukin 13 receptor α2 (IL13Rα2) is overexpressed in metastatic colorectal cancer. Here, we have developed novel strategies to block IL-13 binding to IL13Rα2 in order to reduce metastatic spread. METHODS: Synthetic IL13Rα2 D1 peptide (GSETWKTIITKN) was tested for the inhibition of IL-13 binding to IL13Rα2 using ELISA and different cellular assays. Peptide blocking effects on different cell signalling mediators were determined by western blot. An enantiomer version of the peptide (D-D1) was prepared to avoid proteolytic digestion. Nude mice were used for tumour growth and survival analysis after treatment with IL13Rα2 peptides. RESULTS: IL13Rα2 D1 peptide inhibited migration, invasion, and proliferation in metastatic colorectal and glioblastoma cancer cells treated with IL-13. Residues 82K, 83T, 85I and 86T were essential for blocking IL-13. IL13Rα2 peptide abolished ligand-mediated receptor internalisation and degradation, and substantially decreased IL-13 signalling capacity through IL13Rα2 to activate the FAK, PI3K/AKT and Src pathways as well as MT1-MMP expression. In addition, D1 significantly inhibited IL-13-mediated STAT6 activation through IL13Rα1. Nude mice treated with the enantiomer D-D1 peptide showed a remarkable survival increase. CONCLUSIONS: We propose that the D-D1 peptide from IL13Rα2 represents a promising therapeutic agent to inhibit metastatic progression in colorectal cancer and, likely, other solid tumours.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/terapia , Glioblastoma/terapia , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Subunidad alfa2 del Receptor de Interleucina-13/uso terapéutico , Interleucina-13/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Quinasa 1 de Adhesión Focal/metabolismo , Glioblastoma/patología , Células HT29 , Humanos , Subunidad alfa2 del Receptor de Interleucina-13/genética , Metaloproteinasa 14 de la Matriz/biosíntesis , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biochim Biophys Acta Rev Cancer ; 1869(2): 321-332, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29673969

RESUMEN

We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2ß1 integrin, these cadherins promote integrin ß1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2ß1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2ß1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2ß1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Integrina alfa2beta1/metabolismo , Neoplasias/metabolismo , Oligopéptidos/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Péptidos/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Sitios de Unión , Cadherinas/antagonistas & inhibidores , Cadherinas/inmunología , Adhesión Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Humanos , Integrina alfa2beta1/antagonistas & inhibidores , Integrina alfa2beta1/inmunología , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Unión Proteica , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Receptores de Péptidos/antagonistas & inhibidores , Receptores de Péptidos/inmunología , Transducción de Señal
17.
Clin Cancer Res ; 24(2): 433-444, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916526

RESUMEN

Purpose: New targets are required for the control of advanced metastatic disease. We investigated the use of cadherin RGD motifs, which activate the α2ß1integrin pathway, as targets for the development of therapeutic monoclonal antibodies (mAb).Experimental Design: Cadherin 17 (CDH17) fragments and peptides were prepared and used for immunization and antibody development. Antibodies were tested for inhibition of ß1 integrin and cell adhesion, proliferation, and invasion assays using cell lines from different cancer types (colorectal, pancreatic, melanoma, and breast cancer). Effects of the mAbs on cell signaling were determined by Western blot analysis. Nude mice were used for survival analysis after treatment with RGD-specific mAbs and metastasis development.Results: Antibodies against full-length CDH17 failed to block the binding to α2ß1 integrin. However, CDH17 RGD peptides generated highly selective RGD mAbs that blocked CDH17 and vascular-endothelial (VE)-cadherin-mediated ß1 integrin activation in melanoma and breast, pancreatic, and colorectal cancer cells. Antibodies provoked a significant reduction in cell adhesion and proliferation of metastatic cancer cells. Treatment with mAbs impaired the integrin signaling pathway activation of FAK in colorectal cancer, of JNK and ERK kinases in colorectal and pancreatic cancers, and of JNK, ERK, Src, and AKT in melanoma and breast cancer. In vivo, RGD-specific mAbs increased mouse survival after inoculation of melanoma and colorectal cancer cell lines to cause lung and liver metastasis, respectively.Conclusions: Blocking the interaction between RGD cadherins and α2ß1 integrin with highly selective mAbs constitutes a promising therapy against advanced metastatic disease in colon cancer, melanoma, and, potentially, other cancers. Clin Cancer Res; 24(2); 433-44. ©2017 AACRSee related commentary by Marshall, p. 253.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Cadherinas/antagonistas & inhibidores , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Melanoma/metabolismo , Melanoma/patología , Animales , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Neoplasias Colorrectales/mortalidad , Modelos Animales de Enfermedad , Humanos , Integrina beta1/metabolismo , Metástasis de la Neoplasia , Estadificación de Neoplasias , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Proteome Res ; 17(1): 252-264, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29131639

RESUMEN

We investigated new transcription and splicing factors associated with the metastatic phenotype in colorectal cancer. A concatenated tandem array of consensus transcription factor (TF)-response elements was used to pull down nuclear extracts in two different pairs of colorectal cancer cells, KM12SM/KM12C and SW620/480, genetically related but differing in metastatic ability. Proteins were analyzed by label-free LC-MS and quantified with MaxLFQ. We found 240 proteins showing a significant dysregulation in highly metastatic KM12SM cells relative to nonmetastatic KM12C cells and 257 proteins in metastatic SW620 versus SW480. In both cell lines there were similar alterations in genuine TFs and components of the splicing machinery like UPF1, TCF7L2/TCF-4, YBX1, or SRSF3. However, a significant number of alterations were cell-line specific. Functional silencing of MAFG, TFE3, TCF7L2/TCF-4, and SRSF3 in KM12 cells caused alterations in adhesion, survival, proliferation, migration, and liver homing, supporting their role in metastasis. Finally, we investigated the prognostic value of the altered TFs and splicing factors in cancer patients. SRSF3 and SFPQ showed significant prognostic value. We observed that SRSF3 displayed a gradual loss of expression associated with cancer progression. Loss of SRSF3 expression was significantly associated with poor survival and shorter disease-free survival, particularly in early stages, in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/química , Metástasis de la Neoplasia , Proteómica/métodos , Factores de Empalme de ARN/análisis , Factores de Transcripción/análisis , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Humanos , Pronóstico , Factores de Empalme Serina-Arginina/análisis
19.
Proteomics ; 17(19)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28861940

RESUMEN

Colorectal cancer (CRC) is the second deadliest cancer worldwide. Here, we aimed to study metastasis mechanisms using spatial proteomics in the KM12 cell model. Cells were SILAC-labeled and fractionated into five subcellular fractions corresponding to: cytoplasm, plasma, mitochondria and ER/golgi membranes, nuclear, chromatin-bound and cytoskeletal proteins and analyzed with high resolution mass spectrometry. We provide localization data of 4863 quantified proteins in the different subcellular fractions. A total of 1318 proteins with at least 1.5-fold change were deregulated in highly metastatic KM12SM cells respect to KM12C cells. The protein network organization, protein complexes and functional pathways associated to CRC metastasis was revealed with spatial resolution. Although 92% of the differentially expressed proteins showed the same deregulation in all subcellular compartments, a subset of 117 proteins (8%) showed opposite changes in different subcellular localizations. The chaperonin CCT, the Eif2 and Eif3 initiation of translation and the oxidative phosphorylation complexes together with an important number of guanine nucleotide-binding proteins, were deregulated in abundance and localization within the metastatic cells. Particularly relevant was the relationship of deregulated protein complexes with exosome secretion. The knowledge of the spatial proteome alterations at subcellular level contributes to clarify the molecular mechanisms underlying colorectal cancer metastasis and to identify potential targets of therapeutic intervention.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Citoplasma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/análisis , Humanos , Metástasis de la Neoplasia , Proteómica , Células Tumorales Cultivadas
20.
J Pathol ; 242(1): 39-51, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28054337

RESUMEN

The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Colorrectales/genética , MicroARNs/genética , Metástasis de la Neoplasia/genética , ARN Neoplásico/genética , Animales , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Forma BB de la Creatina-Quinasa/biosíntesis , Forma BB de la Creatina-Quinasa/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones Desnudos , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Pronóstico , Proteómica/métodos , Enzimas Activadoras de Ubiquitina/biosíntesis , Enzimas Activadoras de Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...