Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 14: 684714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531721

RESUMEN

Peripheral neuropathy, which is the result of nerve damage from lesions or disease, continues to be a major health concern due to the common manifestation of neuropathic pain. Most investigations into the development of peripheral neuropathy focus on key players such as voltage-gated ion channels or glutamate receptors. However, emerging evidence points to mitochondrial dysfunction as a major player in the development of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in peripheral neuropathy are poorly understood, however, the Class IIb histone deacetylase (HDAC6), may play an important role in the process. HDAC6 is a key regulator in multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6 inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral neuropathy. Thus, HDAC6 inhibitors are being investigated as potential therapies for multiple peripheral neuropathic disorders. Here, we review emerging studies and integrate recent advances in understanding the unique connection between peripheral neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.

2.
Nat Commun ; 12(1): 5389, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508101

RESUMEN

Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.


Asunto(s)
Carcinosarcoma/genética , Proteínas Portadoras/genética , Neoplasias Mamarias Experimentales/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Mama/patología , Carcinosarcoma/patología , Proteínas Portadoras/metabolismo , Ensayos Clínicos como Asunto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-met/genética , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Development ; 145(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654218

RESUMEN

Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Genes p53 , Proteína p53 Supresora de Tumor/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Neoplasias/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
4.
Drug Discov Today Technol ; 19: 57-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27769359

RESUMEN

Tripartite Motif-containing protein 24 (TRIM24) functions as an E3 ligase targeting p53 for ubiquitination, a histone 'reader' that interacts with a specific signature of histone post-translational modifications and a co-regulator of nuclear receptor-regulated transcription. Although mouse models of Trim24 depletion suggest that TRIM24 may be a liver-specific tumor suppressor, several studies show that human TRIM24 is an oncogene when aberrantly over expressed. This review focuses on the mechanisms of TRIM24 functions in oncogenesis and metabolic reprogramming, which underlie recent interest in therapeutic targeting of aberrant TRIM24 in human cancers.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Proteínas Oncogénicas/metabolismo , Animales , Cromatina/metabolismo , Humanos , Neoplasias/metabolismo
5.
Nucleic Acids Res ; 44(8): 3659-74, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26762983

RESUMEN

Trimethylated histone H3 lysine 27 (H3K27me3) is linked to gene silencing, whereas H3K4me3 is associated with gene activation. These two marks frequently co-occupy gene promoters, forming bivalent domains. Bivalency signifies repressed but activatable states of gene expression and can be resolved to active, H3K4me3-prevalent states during multiple cellular processes, including differentiation, development and epithelial mesenchymal transition. However, the molecular mechanism underlying bivalency resolution remains largely unknown. Here, we show that the H3K27 demethylase UTX (also called KDM6A) is required for the resolution and activation of numerous retinoic acid (RA)-inducible bivalent genes during the RA-driven differentiation of mouse embryonic stem cells (ESCs). Notably, UTX loss in mouse ESCs inhibited the RA-driven bivalency resolution and activation of most developmentally critical homeobox (Hox) a-d genes. The UTX-mediated resolution and activation of many bivalent Hox genes during mouse ESC differentiation were recapitulated during RA-driven differentiation of human NT2/D1 embryonal carcinoma cells. In support of the importance of UTX in bivalency resolution, Utx-null mouse ESCs and UTX-depleted NT2/D1 cells displayed defects in RA-driven cellular differentiation. Our results define UTX as a bivalency-resolving histone modifier necessary for stem cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Histona Demetilasas/fisiología , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Genes Homeobox , Histona Demetilasas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Tretinoina/farmacología
6.
Stem Cells ; 34(5): 1284-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731713

RESUMEN

MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes, as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation, a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion, we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/genética , Hepatocitos/citología , Hepatocitos/metabolismo , MicroARNs/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Bases , Línea Celular , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hígado/citología , MicroARNs/genética , Factores de Transcripción , Regulación hacia Arriba/genética , Proteínas Señalizadoras YAP
7.
Epigenetics ; 10(11): 1006-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26440216

RESUMEN

Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.


Asunto(s)
Metilación de ADN , Reparación del ADN , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proliferación Celular , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , Células HEK293 , Humanos , Timina ADN Glicosilasa/deficiencia
8.
J Hepatol ; 62(2): 371-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25281858

RESUMEN

BACKGROUND & AIMS: Aberrantly high expression of TRIM24 occurs in human cancers, including hepatocellular carcinoma. In contrast, TRIM24 in the mouse is reportedly a liver-specific tumour suppressor. To address this dichotomy and to uncover direct regulatory functions of TRIM24 in vivo, we developed a new mouse model that lacks expression of all Trim24 isoforms, as the previous model expressed normal levels of Trim24 lacking only exon 4. METHODS: To produce germline-deleted Trim24(dlE1) mice, deletion of the promoter and exon 1 of Trim24 was induced in Trim24(LoxP) mice by crossing with a zona pellucida 3-Cre line for global deletion. Liver-specific deletion (Trim24(hep)) was achieved by crossing with an albumin-Cre line. Phenotypic analyses were complemented by protein, gene-specific and global RNA expression analyses and quantitative chromatin immunoprecipitation. RESULTS: Global loss of Trim24 disrupted hepatic homeostasis in 100% of mice with highly significant, decreased expression of oxidation/reduction, steroid, fatty acid, and lipid metabolism genes, as well as increased expression of genes involved in unfolded protein response, endoplasmic reticulum stress and cell cycle pathways. Trim24(dlE1/dlE1) mice have markedly depleted visceral fat and, like Trim24(hep/hep) mice, spontaneously develop hepatic lipid-filled lesions, steatosis, hepatic injury, fibrosis and hepatocellular carcinoma. CONCLUSIONS: TRIM24, an epigenetic co-regulator of transcription, directly and indirectly represses hepatic lipid accumulation, inflammation, fibrosis and damage in the murine liver. Complete loss of Trim24 offers a model of human non-alcoholic fatty liver disease, steatosis, fibrosis and development of hepatocellular carcinoma in the absence of high-fat diet or obesity.


Asunto(s)
Carcinoma Hepatocelular/genética , Hígado Graso/genética , Regulación Neoplásica de la Expresión Génica , Lípidos/análisis , Neoplasias Hepáticas Experimentales/genética , Proteínas Nucleares/genética , ARN Neoplásico/genética , Factores de Transcripción/genética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/biosíntesis , Reacción en Cadena de la Polimerasa , Factores de Transcripción/biosíntesis
9.
Nucleic Acids Res ; 42(11): 6956-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24875481

RESUMEN

TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , Dominio Catalítico , Diferenciación Celular/genética , Islas de CpG , Citosina/análogos & derivados , Citosina/análisis , Citosina/metabolismo , Proteínas de Unión al ADN/química , Dioxigenasas/química , Células HEK293 , Humanos , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas/química , Transcripción Genética
10.
Nucleic Acids Res ; 42(1): 205-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24078252

RESUMEN

How tumor suppressor p53 selectively responds to specific signals, especially in normal cells, is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation, induced by retinoic acid, versus DNA damage, caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and, in pluripotent hESCs, are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases, UTX and JMJD3, to chromatin. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation, a process highly distinct from stress-induced p53 response in hESCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Línea Celular , Daño del ADN , Células Madre Embrionarias/citología , Genoma Humano , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Factores de Transcripción/metabolismo
12.
Hepatology ; 57(5): 2004-13, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23300120

RESUMEN

UNLABELLED: Functions of p53 during mitosis reportedly include prevention of polyploidy and transmission of aberrant chromosomes. However, whether p53 plays these roles during genomic surveillance in vivo and, if so, whether this is done via direct or indirect means remain unknown. The ability of normal, mature hepatocytes to respond to stimuli, reenter the cell cycle, and regenerate liver mass offers an ideal setting to assess mitosis in vivo. In quiescent liver, normally high ploidy levels in adult mice increased with loss of p53. Following partial hepatectomy, p53(-/-) hepatocytes exhibited early entry into the cell cycle and prolonged proliferation with an increased number of polyploid mitoses. Ploidy levels increased during regeneration of both wild-type (WT) and p53(-/-) hepatocytes, but only WT hepatocytes were able to dynamically resolve ploidy levels and return to normal by the end of regeneration. We identified multiple cell cycle and mitotic regulators, including Foxm1, Aurka, Lats2, Plk2, and Plk4, as directly regulated by chromatin interactions of p53 in vivo. Over a time course of regeneration, direct and indirect regulation of expression by p53 is mediated in a gene-specific manner. CONCLUSION: Our results show that p53 plays a role in mitotic fidelity and ploidy resolution in hepatocytes of normal and regenerative liver.


Asunto(s)
Hígado/patología , Mitosis/fisiología , Ploidias , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Ciclo Celular/fisiología , Proliferación Celular , Hepatectomía , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
14.
PLoS Biol ; 10(2): e1001268, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22389628

RESUMEN

Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1) phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Células Madre Embrionarias/fisiología , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Acetilación , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Apoptosis , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Transcripción Genética , Tretinoina/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
J Cell Biochem ; 113(7): 2179-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22345090

RESUMEN

Numerous genome wide profiles of gene expression changes in human hepatocellular carcinoma (HCC), compared to normal liver tissue, have been reported. Hierarchical clustering of these data reveal distinct patterns, which underscore conservation between human disease and mouse models of HCC, as well as suggest specific classification of subtypes within the heterogeneous disease of HCC. Global profiling of gene expression in mouse liver, challenged by partial hepatectomy to regenerate, reveals alterations in gene expression that occur in response to acute injury, inflammation, and re-entry into cell cycle. When we integrated datasets of gene expression changes in mouse models of HCC and those that are altered at specific times of liver regeneration, we saw shared, conserved alterations in gene expression within specific biological pathways, both up-regulated, for example, cell cycle, cell death, and cellular development, or down-regulated, for example, vitamin and mineral metabolism, lipid metabolism, and molecular transport. Additional molecular mechanisms shared by liver regeneration and HCC, as yet undiscovered, may have important implications in tumor development and recurrence. These comparisons may offer a way to judge how liver resection, in the treatment of HCC, introduces challenges to care of the disease. Further, uncovering the pathways conserved in inflammatory response, hypertrophy, proliferation, and architectural remodeling of the liver, which are shared in liver regeneration and HCC, versus those specific to tumor development and progression in HCC, may reveal new biomarkers or potential therapeutic targets in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Hepatopatías/genética , Neoplasias Hepáticas/genética , Regeneración Hepática/genética , Animales , Apoptosis/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Hígado/citología , Hígado/metabolismo , Hígado/patología , Hepatopatías/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones
17.
Mol Cell ; 43(5): 697-8, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884971

RESUMEN

In this issue of Molecular Cell, Wu et al. (2011) reveal an essential role for a chromatin modifier, histone deacetylase 3 (HDAC3), in hypoxia-induced epithelial-mesenchymal transition (EMT); HIF-activated HDAC3 integrates with WDR5 to impose chromatin modifications that culminate in EMT.

18.
Mol Cell Biol ; 31(15): 3126-35, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21628526

RESUMEN

Posttranslational modifications of histone proteins play important roles in the modulation of gene expression. The Saccharomyces cerevisiae (yeast) 2-MDa SAGA (Spt-Ada-Gcn5) complex, a well-studied multisubunit histone modifier, regulates gene expression through Gcn5-mediated histone acetylation and Ubp8-mediated histone deubiquitination. Using a proteomics approach, we determined that the SAGA complex also deubiquitinates nonhistone proteins, including Snf1, an AMP-activated kinase. Ubp8-mediated deubiquitination of Snf1 affects the stability and phosphorylation state of Snf1, thereby affecting Snf1 kinase activity. Others have reported that Gal83 is phosphorylated by Snf1, and we found that deletion of UBP8 causes decreased phosphorylation of Gal83, which is consistent with the effects of Ubp8 loss on Snf1 kinase functions. Overall, our data indicate that SAGA modulates the posttranslational modifications of Snf1 in order to fine-tune gene expression levels.


Asunto(s)
Endopeptidasas/metabolismo , Histonas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP , Acetilación , Endopeptidasas/genética , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/biosíntesis , Histonas/metabolismo , Fosforilación , Plásmidos , Procesamiento Proteico-Postraduccional , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
19.
Dev Biol ; 349(1): 90-9, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20969844

RESUMEN

As neuronal progenitors differentiate into neurons, they acquire a unique set of transcription factors. The transcriptional repressor REST prevents progenitors from undergoing differentiation. Notably, REST binding sites are often associated with retinal ganglion cell (RGC) genes whose expression in the retina is positively controlled by Atoh7, a factor essential for RGC formation. The key regulators that enable a retinal progenitor cell (RPC) to commit to an RGC fate have not been identified. We show here that REST suppresses RGC gene expression in RPCs. REST inactivation causes aberrant expression of RGC transcription factors in proliferating RPCs, independent of Atoh7, resulting in increased RGC formation. Strikingly, inactivating REST in Atoh7-null retinas restores transcription factor expression, which partially activates downstream RGC genes but is insufficient to prevent RGC loss. Our results demonstrate an Atoh7-independent program for initial activation of RGC genes and suggest a novel role for REST in preventing premature expression in RPCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas del Tejido Nervioso/genética , Unión Proteica , Proteínas Represoras/genética , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo
20.
Int J Biochem Cell Biol ; 43(2): 189-97, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20307684

RESUMEN

An increasing demand for new strategies in cancer prevention and regenerative medicine requires a better understanding of molecular mechanisms that control cell proliferation in tissue-specific manner. Regenerating liver is a unique model allowing use of biochemical, genetic, and engineering tools to uncover molecular mechanisms and improve treatment of hepatic cancers, liver failure, and fibrotic disease. Molecular mechanisms of liver regeneration involve extra- and intracellular factors to activate transcription of genes normally silenced in quiescent liver. While many upstream signaling pathways of the regenerating liver have been extensively studied, our knowledge of the downstream effectors, transcription factors (TFs), remains limited. This review describes consecutive engagement of pre-existing and de novo synthesized TFs, as cascades that regulate expression of growth-related and metabolic genes during liver regeneration after partial hepatectomy in mice. Several previously recognized regulators of regenerating liver are described in the light of recently identified co-activator and co-repressor complexes that interact with primary DNA-binding TFs. Published results of gene expression and chromatin immunoprecipitation analyses, as well as studies of transgenic mouse models, are used to emphasize new potential regulators of transcription during liver regeneration. Finally, a more detailed description of newly identified transcriptional regulators of liver regeneration illustrates the tightly regulated balance of proliferative and metabolic responses to partial hepatectomy.


Asunto(s)
Regulación de la Expresión Génica , Regeneración Hepática , Animales , Comunicación Celular , Ciclo Celular , Proliferación Celular , Hepatectomía , Hepatocitos/fisiología , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA