Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0306690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39102411

RESUMEN

The Step Pyramid of Djoser in Saqqara, Egypt, is considered the oldest of the seven monumental pyramids built about 4,500 years ago. From transdisciplinary analysis, it was discovered that a hydraulic lift may have been used to build the pyramid. Based on our mapping of the nearby watersheds, we show that one of the unexplained massive Saqqara structures, the Gisr el-Mudir enclosure, has the features of a check dam with the intent to trap sediment and water. The topography beyond the dam suggests a possible ephemeral lake west of the Djoser complex and water flow inside the 'Dry Moat' surrounding it. In the southern section of the moat, we show that the monumental linear rock-cut structure consisting of successive, deep compartments combines the technical requirements of a water treatment facility: a settling basin, a retention basin, and a purification system. Together, the Gisr el-Mudir and the Dry Moat's inner south section work as a unified hydraulic system that improves water quality and regulates flow for practical purposes and human needs. Finally, we identified that the Step Pyramid's internal architecture is consistent with a hydraulic elevation mechanism never reported before. The ancient architects may have raised the stones from the pyramid centre in a volcano fashion using the sediment-free water from the Dry Moat's south section. Ancient Egyptians are famous for their pioneering and mastery of hydraulics through canals for irrigation purposes and barges to transport huge stones. This work opens a new line of research: the use of hydraulic force to erect the massive structures built by Pharaohs.

2.
Heliyon ; 5(9): e02482, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31687576

RESUMEN

The abundance and properties of small standing water bodies (SSWB) is globally not well known for their ecological importance is undervalued and their detection suffers from technical limitations. In the current study, we used a combination of GIS-based methods (satellite, orthophoto, ground validation) to evaluate regional estimates of standing water body (SWB) inventories in two geographically different parts of Europe - France, and Estonia. In our study the SWBs surface area threshold limit was 0.00001 km2, exceeding the limits of previous studies (>0.002 km2). The total number of SWBs in Estonia is 111 552 (2.5 per km2) and in France 598 371 (1.1 per km2). Our estimates show that the median size of SWBs in Estonia and France is 0.0003 km2 and 0.0007 km2 respectively, meaning that most of the SSWBs are not included in the global inventories, and their number is therefore underestimated. SSWBs (area below 0.01 km2) form a significant share of the total shoreline length of SWBs, 70.3% in Estonia and 58.8% in France. As nearshore areas are often very productive with diverse habitats, the SSWBs hold a crucial role in maintaining biodiversity. Our results provide quantitative evidence that SSWBs are vital and abundant landscape elements, freshwater resources, and habitats that should not be ignored in global inventories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA