Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(3): 033705, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259931

RESUMEN

This work presents a novel method of obtaining in situ strain measurements at high temperature by simultaneous digital image correlation (DIC), which provides the total strain on the specimen surface, and synchrotron x-ray diffraction (XRD), which provides lattice strains of crystalline materials. DIC at high temperature requires specialized techniques to overcome the effects of increased blackbody radiation that would otherwise overexpose the images. The technique presented herein is unique in that it can be used with a sample enclosed in an infrared heater, remotely and simultaneously with synchrotron XRD measurements. The heater included a window for camera access, and the light of the heater lamps is used as illumination. High-temperature paint is used to apply a random speckle pattern to the sample to allow the tracking of displacements and the calculation of the DIC strains. An inexpensive blue theatrical gel filter is used to block interfering visible and infrared light at high temperatures. This technique successfully produces properly exposed images at 870 °C and is expected to perform similarly at higher temperatures. The average strains measured by DIC were validated by an analytical calculation of the theoretical strain. Simultaneous DIC and XRD strain measurements of Inconel 718 (IN718) tensile test specimens were performed under thermal and mechanical loads and evaluated. This approach uses the fact that with DIC, the total strain is measured, including plastic strain, while with XRD, only elastic strain is captured. The observed differences were discussed with respect to the effective deformation mechanisms.

2.
Nat Commun ; 5: 4559, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25078347

RESUMEN

The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

3.
Rev Sci Instrum ; 84(8): 083904, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24007076

RESUMEN

Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA