Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256054

RESUMEN

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Asunto(s)
Caveolina 1 , Caveolina 3 , Adulto , Animales , Cricetinae , Humanos , Caveolina 1/genética , Caveolina 3/genética , Cricetulus , Mutación , Células CHO , Canales Iónicos
5.
Front Physiol ; 14: 1250951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028792

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the underlying causes of AF initiation are still poorly understood, particularly because currently available models do not allow in distinguishing the initial causes from maladaptive remodeling that induces and perpetuates AF. Lately, the genetic background has been proven to be important in the AF onset. iPSC-derived cardiomyocytes, being patient- and mutation-specific, may help solve this diatribe by showing the initial cell-autonomous changes underlying the development of the disease. Transcription factor paired-like homeodomain 2 (PITX2) has been identified as a key regulator of atrial development/differentiation, and the PITX2 genomic locus has the highest association with paroxysmal AF. PITX2 influences mitochondrial activity, and alterations in either its expression or function have been widely associated with AF. In this work, we investigate the activity of mitochondria in iPSC-derived atrial cardiomyocytes (aCMs) obtained from a young patient (24 years old) with paroxysmal AF, carrying a gain-of-function mutation in PITX2 (rs138163892) and from its isogenic control (CTRL) in which the heterozygous point mutation has been reverted to WT. PITX2 aCMs show a higher mitochondrial content, increased mitochondrial activity, and superoxide production under basal conditions when compared to CTRL aCMs. However, increasing mitochondrial workload by FCCP or ß-adrenergic stimulation allows us to unmask mitochondrial defects in PITX2 aCMs, which are incapable of responding efficiently to the higher energy demand, determining ATP deficiency.

6.
MedComm (2020) ; 4(5): e352, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37638339

RESUMEN

Enhanced P53 signaling may lead to hematopoietic disorders, yet an effective therapeutic strategy is still lacking. Our study, along with previous research, suggests that P53 overactivation and hematopoietic defects are major consequences of zinc deficiency. However, the relationship between these two pathological processes remains unclear. In this study, we observed a severe reduction in the number of hematopoietic stem cells (HSCs) and multi-lineage progenitor cells in zebrafish treated with the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and showed the indispensable role of P53 signaling in the process. Next, we took advantage of HSCs-labeled transgenic zebrafish and conducted a highly efficient phenotypic screening for small molecules against P53-dependent hematopoietic disorders. Hydroxysafflor yellow A (HSYA), a natural chalcone glycoside, exhibited potent protection against hematopoietic failure in zinc-deficient zebrafish and strongly inhibited the P53 pathway. We confirmed the protective effect of HSYA in zinc-deficient mice bone marrow nucleated cells, which showed a significant suppression of P53 signaling and oxidative stress. Furthermore, the hematopoietic-protective activity of HSYA was validated using a mice model of myelotoxicity induced by 5-FU. In summary, our work provides an effective phenotypic screening strategy for identifying hematopoietic-protective agents and reveals the novel role of HSYA as a promising lead compound in rescuing hematopoietic disorders associated with P53 overactivation.

7.
Acta Physiol (Oxf) ; 239(2): e13981, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37186371

RESUMEN

AIMS: Nfix is a transcription factor belonging to the Nuclear Factor I (NFI) family comprising four members (Nfia, b, c, x). Nfix plays important roles in the development and function of several organs. In muscle development, Nfix controls the switch from embryonic to fetal myogenesis by promoting fast twitching fibres. In the adult muscle, following injury, lack of Nfix impairs regeneration, inducing higher content of slow-twitching fibres. Nfix is expressed also in the heart, but its function has been never investigated before. We studied Nfix role in this organ. METHODS: Using Nfix-null and wild type (WT) mice we analyzed: (1) the expression pattern of Nfix during development by qPCR and (2) the functional alterations caused by its absence, by in vivo telemetry and in vitro patch clamp analysis. RESULTS AND CONCLUSIONS: Nfix expression start in the heart from E12.5. Adult hearts of Nfix-null mice show a hearts morphology and sarcomeric proteins expression similar to WT. However, Nfix-null animals show tachycardia that derives form an intrinsic higher beating rate of the sinus node (SAN). Molecular and functional analysis revealed that sinoatrial cells of Nfix-null mice express a significantly larger L-type calcium current (Cacna1d + Cacna1c). Interestingly, downregulation of Nfix by sh-RNA in primary cultures of neonatal rat ventricular cardiomyocytes induced a similar increase in their spontaneous beating rate and in ICaL current. In conclusion, our data provide the first demonstration of a role of Nfix that, increasing the L-type calcium current, modulates heart rate.

8.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315774

RESUMEN

Tongmai Yangxin (TMYX) is a complex compound of the Traditional Chinese Medicine (TCM) used to treat several cardiac rhythm disorders; however, no information regarding its mechanism of action is available. In this study we provide a detailed characterization of the effects of TMYX on the electrical activity of pacemaker cells and unravel its mechanism of action. Single-cell electrophysiology revealed that TMYX elicits a reversible and dose-dependent (2/6 mg/ml) slowing of spontaneous action potentials rate (-20.8/-50.2%) by a selective reduction of the diastolic phase (-50.1/-76.0%). This action is mediated by a negative shift of the If activation curve (-6.7/-11.9 mV) and is caused by a reduction of the cyclic adenosine monophosphate (cAMP)-induced stimulation of pacemaker channels. We provide evidence that TMYX acts by directly antagonizing the cAMP-induced allosteric modulation of the pacemaker channels. Noticeably, this mechanism functionally resembles the pharmacological actions of muscarinic stimulation or ß-blockers, but it does not require generalized changes in cytoplasmic cAMP levels thus ensuring a selective action on rate. In agreement with a competitive inhibition mechanism, TMYX exerts its maximal antagonistic action at submaximal cAMP concentrations and then progressively becomes less effective thus ensuring a full contribution of If to pacemaker rate during high metabolic demand and sympathetic stimulation.


Asunto(s)
AMP Cíclico , Sistemas de Mensajero Secundario , Potenciales de Acción , Animales , China , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Conejos
10.
Adv Sci (Weinh) ; 9(2): e2101485, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761560

RESUMEN

Cardiac hypertrophy is a pivotal pathophysiological step of various cardiovascular diseases, which eventually leads to heart failure and death. Extracts of Rhodiola species (Ext.R), a class of commonly used medicinal herbs in Europe and East Asia, can attenuate cardiac hypertrophy both in vitro and in vivo. Serum/glucocorticoid regulated kinase 1 (SGK1) is identified as a potential target of Ext. R. By mass spectrometry-based kinase inhibitory assay, herbacetin (HBT) from Ext.R is identified as a novel SGK1 inhibitor with IC50 of 752 nmol. Thermal shift assay, KINOMEscan in vitro assay combined with molecular docking proves a direct binding between HBT and SGK1. Site-specific mutation of Asp177 in SGK1 completely ablates the inhibitory activity of HBT. The presence of OH groups at the C-3, C-8, C-4' positions of flavonoids is suggested to be favorable for the inhibition of SGK1 activity. Finally, HBT significantly suppresses cardiomyocyte hypertrophy in vitro and in vivo, reduces reactive oxygen species (ROS) synthesis and calcium accumulation. HBT decreases phosphorylation of SGK1 and regulates its downstream forkhead box protein O1 (FoxO1) signaling pathway. Taken together, the findings suggest that a panel of flavonoids structurally related to HBT may be novel leads for developing new therapeutics against cardiac hypertrophy.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Flavonoides/farmacología , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Cardiomegalia/genética , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas Inmediatas-Precoces/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
12.
Prog Biophys Mol Biol ; 166: 189-204, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400215

RESUMEN

Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales de Potasio , Corazón , Frecuencia Cardíaca , Humanos , Neuronas
13.
Front Neurosci ; 15: 617698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084126

RESUMEN

OBJECTIVE: The aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age. METHODS: Heart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral ß-adrenergic (atenolol), muscarinic (methylscopolamine), and ß-adrenergic + muscarinic blockades, and (iii) following ß-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following ß-adrenergic stimulation. RESULTS: HRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not ß-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias. CONCLUSION: The present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart.

14.
Pflugers Arch ; 473(7): 1009-1021, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934225

RESUMEN

Properties of the funny current (If) have been studied in several animal and cellular models, but so far little is known concerning its properties in human pacemaker cells. This work provides a detailed characterization of If in human-induced pluripotent stem cell (iPSC)-derived pacemaker cardiomyocytes (pCMs), at different time points. Patch-clamp analysis showed that If density did not change during differentiation; however, after day 30, it activates at more negative potential and with slower time constants. These changes are accompanied by a slowing in beating rate. If displayed the voltage-dependent block by caesium and reversed (Erev) at - 22 mV, compatibly with the 3:1 K+/Na+ permeability ratio. Lowering [Na+]o (30 mM) shifted the Erev to - 39 mV without affecting conductance. Increasing [K+]o (30 mM) shifted the Erev to - 15 mV with a fourfold increase in conductance. pCMs express mainly HCN4 and HCN1 together with the accessory subunits CAV3, KCR1, MiRP1, and SAP97 that contribute to the context-dependence of If. Autonomic agonists modulated the diastolic depolarization, and thus rate, of pCMs. The adrenergic agonist isoproterenol induced rate acceleration and a positive shift of If voltage-dependence (EC50 73.4 nM). The muscarinic agonists had opposite effects (Carbachol EC50, 11,6 nM). Carbachol effect was however small but it could be increased by pre-stimulation with isoproterenol, indicating low cAMP levels in pCMs. In conclusion, we demonstrated that pCMs display an If with the physiological properties expected by pacemaker cells and may thus represent a suitable model for studying human If-related sinus arrhythmias.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Potenciales de Acción/efectos de los fármacos , Relojes Biológicos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Electrofisiología/métodos , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp/métodos , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiología
15.
Am J Physiol Cell Physiol ; 320(4): C547-C553, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502948

RESUMEN

In the past decade, ketogenic diet (KD) has gained some popularity as a potential treatment for a wide range of diseases, including neurological and metabolic disorders, thanks to a beneficial role mainly related to its anti-inflammatory properties. The high-fat and carbohydrate-restricted regimen causes changes in the metabolism, leading, through the ß-oxidation of fatty acids, to the hepatic production of ketone bodies (KBs), which are used by many extrahepatic tissues as energy fuels. Once synthetized, KBs are delivered through the systemic circulation to all the tissues of the organism, where they play pleiotropic roles acting directly and indirectly on various targets, and among them ion channels and neurotransmitters. Moreover, they can operate as signaling metabolites and epigenetic modulators. Therefore, it is inappropriate to consider that the KD regimen can improve the patients' clinical condition simply by means of specific and localized effects; rather, it is more correct to think that KBs affect the organism as a whole. In this review, we tried to summarize the recent knowledge of the effects of KBs on various tissues, with a particular attention on the excitable ones, namely the nervous system, heart, and muscles.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Dieta Cetogénica , Metabolismo Energético , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Animales , Enfermedades del Sistema Nervioso Central/dietoterapia , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/fisiopatología , Dieta Cetogénica/efectos adversos , Cardiopatías/dietoterapia , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Potenciales de la Membrana , Enfermedades Musculares/dietoterapia , Enfermedades Musculares/metabolismo , Enfermedades Musculares/fisiopatología , Transducción de Señal
16.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278629

RESUMEN

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Asunto(s)
Bradicardia/genética , Relojes Circadianos/fisiología , Electrocardiografía/métodos , Regulación de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , ARN/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/metabolismo , Bradicardia/fisiopatología , Modelos Animales de Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Ratones
17.
Phytomedicine ; 68: 153171, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32018211

RESUMEN

BACKGROUND: Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action. METHODS AND RESULTS: The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (p > 0.05). CONCLUSION: TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Isoflavonas/farmacología , Sirtuina 3/metabolismo , Acetilación , Angiotensina II/efectos adversos , Animales , Cardiomegalia/inducido químicamente , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/farmacología , Isoproterenol/efectos adversos , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenilefrina/efectos adversos , Ratas
18.
Cardiovasc Res ; 116(6): 1147-1160, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504264

RESUMEN

AIMS: Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS: Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS: Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.


Asunto(s)
Potenciales de Acción/genética , Fibrilación Atrial/genética , Canales de Calcio Tipo L/genética , Frecuencia Cardíaca/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Canales de Calcio Tipo L/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Células Cultivadas , Resistencia a Medicamentos/genética , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Persona de Mediana Edad , Hermanos , Secuenciación del Exoma
19.
Front Pharmacol ; 9: 1288, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483130

RESUMEN

Wenxin Keli (WXKL) is a widely used Chinese botanical drug for the treatment of arrhythmia, which is consisted of four herbs and amber. In the present study, we analyzed the chemical composition of WXKL using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) to tentatively identify 71 compounds. Through typical separate procession, the total extract of WXKL was divided into fractions for further bioassays. Cardiomyocytes and zebrafish larvae were applied for assessment. In vivo arrhythmia model in Cmlc2-GFP transgenic zebrafish was induced by terfenadine, which exhibited obvious reduction of heart rate and occurrence of atrioventricular block. Dynamic beating of heart was recorded by fluorescent microscope and sensitive camera to automatically recognize the rhythm of heartbeat in zebrafish larvae. By integrating the chemical information of WXKL and corresponding bioactivities of these fractions, activity index (AI) of each identified compound was calculated to screen potential active compounds. The results showed that dozens of compounds including ginsenoside Rg1, ginsenoside Re, notoginsenoside R1, lobetyolin, and lobetyolinin were contributed to cardioprotective effects of WXKL. The anti-arrhythmic activities of five compounds were further validated in larvae model and mature zebrafish by measuring electrocardiogram (ECG). Our findings provide a successful example for rapid discovery of bioactive compounds from traditional Chinese medicine (TCM) by activity index based approach coupled with in vivo zebrafish model.

20.
Front Mol Neurosci ; 11: 269, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127718

RESUMEN

HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA