Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789417

RESUMEN

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Homeostasis del Telómero , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Células K562 , Homeostasis del Telómero/genética , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Sistemas CRISPR-Cas
2.
medRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38585732

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS: The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.

3.
Am J Respir Crit Care Med ; 208(11): 1196-1205, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788444

RESUMEN

Rationale: Constantly exposed to the external environment and mutagens such as tobacco smoke, human lungs have one of the highest somatic mutation rates among all human organs. However, the relationship of these mutations to lung disease and function is not known. Objectives: To identify the prevalence and significance of clonal somatic mutations in chronic lung diseases. Methods: We analyzed the clonal somatic mutations from 1,251 samples of normal and diseased noncancerous lung tissue RNA sequencing with paired whole-genome sequencing from the Lung Tissue Research Consortium. We examined the associations of somatic mutations with lung function, disease status, and computationally deconvoluted cell types in two of the most common diseases represented in our dataset, chronic obstructive pulmonary disease (COPD; 29%) and idiopathic pulmonary fibrosis (IPF; 13%). Measurements and Main Results: Clonal somatic mutational burden was associated with reduced lung function in both COPD and IPF. We identified an increased prevalence of clonal somatic mutations in individuals with IPF compared with normal control subjects and individuals with COPD independent of age and smoking status. IPF clonal somatic mutations were enriched in disease-related and airway epithelial-expressed genes such as MUC5B in IPF. Patients who were MUC5B risk variant carriers had increased odds of developing somatic mutations of MUC5B that were explained by increased expression of MUC5B. Conclusions: Our identification of an increased prevalence of clonal somatic mutation in diseased lung that correlates with airway epithelial gene expression and disease severity highlights for the first time the role of somatic mutational processes in lung disease genetics.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Mutación/genética , Fenómenos Fisiológicos Respiratorios , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
Cell Genom ; 2(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35530816

RESUMEN

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

5.
Respir Res ; 23(1): 97, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449067

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS: We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS: We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS: We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
6.
Am J Respir Crit Care Med ; 205(3): 313-323, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762809

RESUMEN

Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.


Asunto(s)
Genotipo , Heterocigoto , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , alfa 1-Antitripsina/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Marcadores Genéticos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Pruebas de Función Respiratoria , Análisis de Supervivencia , Secuenciación Completa del Genoma
7.
Nature ; 590(7845): 290-299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568819

RESUMEN

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Citocromo P-450 CYP2D6/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL , Mutación con Pérdida de Función , Mutagénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Densidad de Población , Medicina de Precisión/normas , Control de Calidad , Tamaño de la Muestra , Estados Unidos , Secuenciación Completa del Genoma/normas
8.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624650

RESUMEN

Herein we present major updates to the National NeuroAIDS Tissue Consortium (NNTC) database. The NNTC's ongoing multisite clinical research study was established to facilitate access to ante-mortem and post-mortem data, tissues and biofluids for the neurohuman immunodeficiency virus (HIV) research community. Recently, the NNTC has expanded to include data from the central nervous system HIV Antiretroviral Therapy Effects Research (CHARTER) study. The data and biospecimens from CHARTER and NNTC cohorts are available to qualified researchers upon request. Data generated by requestors using NNTC biospecimens and tissues are returned to the NNTC upon the conclusion of requestors' work, and this external, experimental data are annotated and curated in the publically accessible NNTC database, thereby extending the utility of each case. A flexible and extensible database ontology allows the integration of disparate data sets, including external experimental data, clinical neuropsychological and neuromedical testing data, tissue pathology and neuroimaging data.


Asunto(s)
Complejo SIDA Demencia , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Adulto , Bancos de Muestras Biológicas , Investigación Biomédica , Femenino , Infecciones por VIH , Humanos , Internet , Masculino , Persona de Mediana Edad , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...