Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731902

RESUMEN

Investigation of chiroptical polymers in the solution phase is paramount for designing supramolecular architectures for photonic or biomedical devices. This work is devoted to the case study of poly(propylene oxide) (PPO) optical activity in several solvents: benzonitrile, carbon disulfide, chloroform, ethyl acetate, and p-dioxane. To attain information on the interactions in these systems, rheological testing was undertaken, showing distinct variations of the rheological parameters as a function of the solvent type. These aspects are also reflected in the refractive index dispersive behavior, from which linear and non-linear optical properties are extracted. To determine the circular birefringence and specific rotation of the PPO solutions, the alternative method of the channeled spectra was employed. The spectral data were correlated with the molecular modeling of the PPO structural unit in the selected solvents. Density functional theory (DFT) computational data indicated that the torsional potential energy-related to the O1-C2-C3-O4 dihedral angle from the polymer repeating unit-was hindered in solvation environments characterized by high polarity and the ability to interact via hydrogen bonding. This was in agreement with the optical characterization of the samples, which indicated a lower circular birefringence and specific rotation for the solutions of PPO in ethyl acetate and p-dioxane. Also, the shape of optical rotatory dispersion curves was slightly modified for PPO in these solvents compared with the other ones.


Asunto(s)
Solventes , Solventes/química , Glicoles de Propileno/química , Polipropilenos/química , Polímeros/química , Modelos Moleculares , Rotación , Enlace de Hidrógeno , Reología
2.
Materials (Basel) ; 16(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512255

RESUMEN

Azo-polyimide films with supramolecular structure were obtained by casting onto glass plates a mixture based on polyamidic acid and different quantities of azochromophore, followed by thermal treatment to realize the final azo-polyimide structure. The dielectric characteristics of the supramolecular structure of polymer films were investigated by broad-band dielectric spectroscopy measurements at different temperatures and frequencies. The free-standing films proved to be flexible and tough and maintained their integrity after repeated bending. The work of adhesion at the polymer/platinum interface was calculated after the evaluation of the surface energy parameters before and after plasma treatment. Atomic force microscopy was used to image the surface morphology, the evolution of the roughness parameters, and the adhesion force between the platinum-covered tip and the polymer surface, registered at the nanoscale with the quantity of the azo dye introduced in the system. The simulation of the columnar growth of a platinum layer was made to provide information about the deposition parameters that should be used for optimal results in the deposition of platinum electrodes for sensors.

3.
Sensors (Basel) ; 23(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177692

RESUMEN

A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why it is required to have good interfacial compatibility between the flexible substrate and the inorganic layer. The interface of the sensor elements must be designed in such a way as to improve the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly employed techniques used for surface adaptation by patterning polyimides to increase contact and enhance device reliability and signal transmission. In this context, this work highlights unreported aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability, which are impacting the compatibility with silver. The texture parameters indicate an improvement of the modulations' quality arising after laser irradiation through the phase mask, increasing the bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore increases. The force curve spectroscopy and wettability studies indicated that the modification of the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal lines when the azo component and the polyamidic acid are in equimolar quantities.

4.
Molecules ; 28(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37049717

RESUMEN

Optical polymers are recognized for their high transparency, raised flexibility, low cost, and good film-forming ability; hence, they introduce a multitude of benefits in a wide range of devices, such as information storage, displays, optical communications, and filters. Among the optical properties, birefringence is an essential parameter in practical cases that demand the control of the state of polarization of light. This review is focused on describing some fundamental and applicative aspects concerning the optical birefringence of the polymer materials. First, elementary notions depicting the phenomenon of light double refraction in macromolecular media are provided. Furthermore, the most relevant optical techniques to determine birefringence are reviewed by highlighting the working principle and mathematical basis for computing this parameter. Then, a series of investigations of optically birefringent polymers are described, summarizing the most utilized approaches to induce light double refraction in such materials. The selected results are analyzed in relation to the pursued applications. In the end, the future of this scientific domain is briefly presented by establishing the research paths that need further exploration. Moreover, the novel directions that could be formulated and might contribute to certain considerable advancements in the materials employed in the modern optical technologies are mentioned.

5.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850339

RESUMEN

The progress of digital technologies demands more speed and larger storage capacity. Optical storage systems have the advantage of being cheap, fast and capacious. This article explores the potential use of polyimide-based films as a recording medium for optical storage devices. The materials were designed through a host-guest approach that involves a cyano-containing polyimide precursor and an azochromophore combined in the following ratios: 1:0.25, 1:0.5, 1:0.75 and 1:1. After thermal treatment up to 200 °C, polyimide systems were formed with supramolecular structures constructed via hydrogen bonding as shown by molecular modeling and FTIR at around 3350 cm-1. The aspects arising from the variation of the azo-dye content in the polyimide samples and their impact on the vitrification temperature, colorimetric features, refractive index, band gap, non-linear optical susceptibility and birefringence were investigated for the first time. The thermal analysis indicated a slight decrease in the vitrification temperature from 190.84 °C for the sample without azo dye to 163.91 °C for the film containing the highest leading of azo dye. The morphology images revealed the occurrence of periodic structures in azo-derived materials exposed to a UV laser, which is accentuated by the addition of more azo dye molecules. Optical tests allowed observation of the increase in the dominant wavelength, refractivity and optical conductivity of the samples, produced by the incorporation of azochromophore and laser irradiation. The photo-generated birefringence increased from 0.014 (sample with 1:0.25) to 0.036 (sample with 1:1), which in combination with the created regular topography pattern, is essential for the use of these materials as recording media in optical storage applications.

6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674515

RESUMEN

The progress of the automated industry has introduced many benefits in our daily life, but it also produces undesired electromagnetic interference (EMI) that distresses the end-users and functionality of electronic devices. This article develops new composites based on a polyetherimide (PEI) matrix and cobalt ferrite (CoFe2O4) nanofiller (10-50 wt%) by mixing inorganic phase in the poly(amic acid) solution, followed by film casting and controlled heating, to acquire the corresponding imide structure. The composites were designed to contain both electric and magnetic dipole sources by including highly polarizable groups (phenyls, ethers, -CN) in the PEI structure and by loading this matrix with magnetic nanoparticles, respectively. The films exhibited high thermal stability, having the temperature at which decomposition begins in the interval of 450-487 °C. Magnetic analyses indicated a saturation magnetization, coercitive force, and magnetic remanence of 27.9 emu g-1, 705 Oe, and 9.57 emu g-1, respectively, for the PEI/CoFe2O4 50 wt%. Electrical measurements evidenced an increase in the conductivity from 4.42 10-9 S/cm for the neat PEI to 1.70 10-8 S/cm for PEI/CoFe2O4 50 wt% at 1 MHz. The subglass γ- and ß-relaxations, primary relaxation, and conductivity relaxation were also examined depending on the nanofiller content. These novel composites are investigated from the point of view of their EMI shielding properties, showing that they are capable of attenuating the electric and magnetic parts of electromagnetic waves.


Asunto(s)
Anestésicos Generales , Cobalto , Conductividad Eléctrica
7.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499549

RESUMEN

High-performance supramolecular polyimide systems were synthesized via a simple and innovative approach using two types of azo-chromophores, leading to concomitant special properties: high thermostability, the ability to be processed in the form of films with high flexibility, adequate morphological features, and good structuring capacity via phase mask ultraviolet (UV) laser irradiation, induced by the presence of the azo groups (-N=N-). The dimension and the anisotropy degree of the micro/nano patterns obtained on the surface of the flexible films (determined by atomic force microscopy) depend on the azo-dye type used in the supramolecular azopolyimide synthesis, which were higher when the azo-chromophore containing a -cyano group (-C≡N) was used. The molecular dynamics method, an excellent tool for an in-depth examination of the intermolecular interactions, was used to explain the morphological aspects. Energetic, dynamic and structural parameters were calculated for the two systems containing azo-chromophores, as well as for the pristine polymer system. It was highlighted that the van der Waals forces make a major contribution to the intermolecular interactions. The results from the combination of the dynamic analysis and the concentration profile explain the better mobility of the polyimide chains with a maximum content of azo groups in the cis configuration compared to the other systems. Taking all these data into account, the surfaces of the films can be tuned as required for the proposed applications, namely as substrates for flexible electronis.


Asunto(s)
Compuestos Azo , Luz , Compuestos Azo/química , Microscopía de Fuerza Atómica , Rayos Ultravioleta , Polímeros/química
8.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235997

RESUMEN

The performance of photovoltaics with superstrate configuration is limited by the rigidity and low refractivity of a classical glass cover. In this work, two polyimides (PIs) and two copolyimides combined in the main chain cycloaliphatic moieties, aromatic sequences, chalcogen atoms, and having/lacking fluorine atoms, are proposed as shielding covers for solar cells. The samples containing small cycloaliphatic moieties displayed high transmittance above 80% at 550 nm. The refractive index values under changeable wavelengths and temperatures were shown to influence the magnitude of the reflection losses. At the sample interface with the transparent electrode, optical losses were reduced (~0.26%) in comparison to the classical glass (~0.97%). The samples with the best optical features were further subjected to a surface treatment to render the self-cleaning ability. For this, a new approach was used residing in irradiation with the diffuse coplanar surface barrier discharge (DCSBD), followed by spraying with a commercial substance. Scanning electron microscopy and atomic force microscopy scans show that the surface characteristics were changed after surface treatment, as indicated by the variations in root mean square roughness, surface area ratio, and surface bearing index values. The proposed PI covers diminish the optical losses caused by total internal reflection and soiling, owing to their adapted refractivity and superhydrophobic surfaces (contact angles > 150°), and open up new perspectives for modern photovoltaic technologies.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145037

RESUMEN

The efficiency of photovoltaics (PVs) is related to cover material properties and light management in upper layers of the device. This article investigates new polyimide (PI) covers for PVs that enable light trapping through their induced surface texture. The latter is attained via a novel strategy that involves multi-directional rubbing followed by plasma exposure. Atomic force microscopy (AFM) is utilized to clarify the outcome of the proposed light-trapping approach. Since a deep clarification of either random or periodic surface morphology is responsible for the desired light capturing in solar cells, the elaborated texturing procedure generates a balance among both discussed aspects. Multidirectional surface abrasion with sand paper on pre-defined directions of the PI films reveals some relevant modifications regarding both surface morphology and the resulted degree of anisotropy. The illuminance experiments are performed to examine if the created surface texture is suitable for proper light propagation through the studied PI covers. The adhesion among the upper layers of the PV, namely the PI and transparent electrode, is evaluated. The correlation between the results of these analyses helps to identify not only adequate polymer shielding materials, but also to understand the chemical structure response to new design routes for light-trapping, which might significantly contribute to an enhanced conversion efficiency of the PV devices.

10.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34835871

RESUMEN

The operability of liquid crystal displays is strongly impacted by the orientation aspects of nematics, which in turn are affected by the alignment layer surface features. In this work, two polyimide (PI) structures are obtained based on a cycloaliphatic dianhydride and aromatic or aliphatic diamines with distinct flexibility. The attained PI films have high transmittance (T) for visible radiations, i.e., at 550 nm T > 80%. Here, a novel strategy for creating surface anisotropy in the samples that combines rubbing with a cloth and stretching via pressing is reported. Birefringence and atomic force microscopy (AFM) scans reveal that the generated orientation of the chains is affected by the chemical structure of the polymer and order of the steps involved in the surface treatment. Molecular modeling computations and wettability tests show that the PI structure and produced surface topography are competitive factors, which are impacting the intensity of the interactions with the nematic liquid crystals. The achieved results are of great relevance for designing of reliable display devices with improved uniform orientation of liquid crystals.

11.
Microsc Res Tech ; 76(5): 503-13, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23441079

RESUMEN

The morphological features and surface texture parameters of some polyimide films prepared from a flexible and alicyclic dianhydride, in combination with five aromatic diamines, were evaluated by atomic force microscopy (AFM) in order to determine their applicability in electronics. By means of the surface roughness, shape of the surface height distribution, and angular and radial texture, a precise description of the actual surface topographies at the interface with other materials was made. The polyimide structures led to the development of different surface morphologies (from granular to porous and from bumpy to spiky). The relief diversity was described by the entropy of morphology, which had a similar trend with the root mean square roughness, which presents low values, i.e. 0.5-1.8 nm. Three-dimensional AFM images and the corresponding angular spectra, together with texture aspect ratio and texture direction index (close to 1), indicate that no predominant orientation exists on the investigated surfaces. The redundancy in the morphology was associated with the concept of fractals, the maximum redundancy being achieved for the polyimide with the most complex polymer chain conformation. These results provide useful insights in selecting the polyimide structure, which has the optimal morphology, roughness, orientation, bearing properties, or self-similarity for microelectronic applications such as: substrate for display backplanes, planar technology, microelectronic packaging, etc.

12.
J Phys Chem B ; 116(30): 9082-8, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22765226

RESUMEN

Solution rheology and electrospinning performance of an aromatic polyimide based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) was studied. Analyzing the dependence of specific viscosity on polymer concentration enabled the evaluation of the transition from semidilute unentangled to semidilute entangled regime at 18.3%. Modification of chain interactions in solution is also reflected in a sudden increase of flow energetic barrier and consistency index values from 3.56 to 10.28 kJ/mol and 0.19 to 1.09 Pa·s(n), respectively. In the concentration domain of 15-20% the relaxation time is enhanced from 0.48 to 1.07 s, as a consequence of less chain mobility, which can be associated with the elastic character of the polyimide solution, useful for obtaining fibers. Scanning electron microscopy (SEM) and polarized light microscopy (PLM) images indicate that at 25% beaded fibers are obtained, while at 30% bead-free fibers are formed having the diameter comprised between 0.56 and 0.85 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...