Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005908

RESUMEN

The use of the Ratio of Oxygen Saturation (ROX) index to predict the success of high-flow nasal oxygenation (HFNO) is well established. The ROX can also predict the need for intubation, mortality, and is easier to calculate compared with APACHE II. In this prospective study, the primary aim is to compare the ROX (easily administered in resource limited setting) to APACHE II for clinically relevant outcomes such as mortality and the need for intubation. Our secondary aim was to identify thresholds for the ROX index in predicting outcomes such as the length of ICU stay and failure of non-invasive respiratory support therapies and to assess the effectiveness of using the ROX (day 1 at admission, day 2, and day 3) versus Acute physiology and chronic health evaluation (APACHE) II scores (at admission) in patients with Coronavirus Disease 2019 (COVID-19) pneumonia and Acute Respiratory Distress Syndrome (ARDS) to predict early, late, and non-responders. After screening 208 intensive care unit patients, a total of 118 COVID-19 patients were enrolled, who were categorized into early (n = 38), late (n = 34), and non-responders (n = 46). Multinomial logistic regression, receiver operating characteristic (ROC), Multivariate Cox regression, and Kaplan-Meier analysis were conducted. Multinomial logistic regressions between late and early responders and between non- and early responders were associated with reduced risk of treatment failures. ROC analysis for early vs. late responders showed that APACHE II on admission had the largest area under the curve (0.847), followed by the ROX index on admission (0.843). For responders vs. non-responders, we found that the ROX index on admission had a slightly better AUC than APACHE II on admission (0.759 vs. 0.751). A higher ROX index on admission [HR (95% CI): 0.29 (0.13-0.52)] and on day 2 [HR (95% CI): 0.55 (0.34-0.89)] were associated with a reduced risk of treatment failure. The ROX index can be used as an independent predictor of early response and mortality outcomes to HFNO and NIV in COVID-19 pneumonia, especially in low-resource settings, and is non-inferior to APACHE II.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Neumonía , Humanos , APACHE , Estudios Prospectivos , COVID-19/terapia , Pronóstico , Estudios Retrospectivos
2.
Viruses ; 15(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37766286

RESUMEN

High-flow nasal cannula (HFNC) and ventilator-delivered non-invasive mechanical ventilation (NIV) were used to treat acute respiratory distress syndrome (ARDS) due to COVID-19 pneumonia, especially in low- and middle-income countries (LMICs), due to lack of ventilators and manpower resources despite the paucity of data regarding their efficacy. This prospective study aimed to analyse the efficacy of HFNC versus NIV in the management of COVID-19 ARDS. A total of 88 RT-PCR-confirmed COVID-19 patients with moderate ARDS were recruited. Linear regression and generalized estimating equations (GEEs) were used for trends in vital parameters over time. A total of 37 patients were on HFNC, and 51 were on NIV. Patients in the HFNC group stayed slightly but not significantly longer in the ICU as compared to their NIV counterparts (HFNC vs. NIV: 8.00 (4.0-12.0) days vs. 7.00 (2.0-12.0) days; p = 0.055). Intubation rates, complications, and mortality were similar in both groups. The switch to HFNC from NIV was 5.8%, while 37.8% required a switch to NIV from HFNC. The resolution of respiratory alkalosis was better with NIV. We conclude that in patients with COVID-19 pneumonia with moderate ARDS, the duration of treatment in the ICU, intubation rate, and mortality did not differ significantly with the use of HFNC or NIV for respiratory support.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Cánula , Respiración Artificial , Estudios Prospectivos , COVID-19/terapia
3.
Vaccines (Basel) ; 10(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36016121

RESUMEN

Several studies have proposed that the neutrophil−lymphocyte ratio (NLR) is one of the various biomarkers that can be useful in assessing COVID-19 disease-related outcomes. Our systematic review analyzes the relationship between on-admission NLR values and COVID-19 severity and mortality. Six different severity criteria were used. A search of the literature in various databases was conducted from 1 January 2020 to 1 May 2021. We calculated the pooled standardized mean difference (SMD) for the collected NLR values. A meta-regression analysis was performed, looking at the length of hospitalization and other probable confounders, such as age, gender, and comorbidities. A total of sixty-four studies were considered, which included a total of 15,683 patients. The meta-analysis showed an SMD of 3.12 (95% CI: 2.64−3.59) in NLR values between severe and non-severe patients. A difference of 3.93 (95% CI: 2.35−5.50) was found between survivors and non-survivors of the disease. Upon summary receiver operating characteristics analysis, NLR showed 80.2% (95% CI: 74.0−85.2%) sensitivity and 75.8% (95% CI: 71.3−79.9%) specificity for the prediction of severity and 78.8% (95% CI: 73.5−83.2%) sensitivity and 73.0% (95% CI: 68.4−77.1%) specificity for mortality, and was not influenced by age, gender, or co-morbid conditions. Conclusion: On admission, NLR predicts both severity and mortality in COVID-19 patients, and an NLR > 6.5 is associated with significantly greater the odds of mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...