Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(41): 14867-14879, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37795751

RESUMEN

A new synthetic method has been developed for the preparation of unexpected emissive iridium(III) complexes (A and B), directly obtained from the established [Ir(ppy)2(µ-Cl)]2 dimer, under reaction conditions in which such compounds are usually considered stable. Complex A ([Ir(ppy)2(Oppy)], where Hppy = 2-phenylpyridine and HOppy = 2-(o-hydroxyphenyl)pyridine) was obtained from the dimer without the addition of further ancillary ligands in the reaction environment, but in the presence of a basic water environment in 2-ethoxyethanol as solvent at 165 °C. The complex evidences the unexpected insertion of an oxygen atom between the iridium(III) center and the carbon atom of one ppy moiety. Under specific reaction conditions, the mer-[Ir(ppy)3] complex (B) was obtained. The presence of the right amount of water is important to maximize the formation of A relative to B. Both compounds were fully characterized by NMR spectroscopy and mass spectrometry (MS), and the X-ray structure of A was also determined. DFT calculations were used to shed light on the reaction mechanism leading to the unexpected formation of A, suggesting that the Oppy ligand is generated intramolecularly once the [Ir(ppy)2(µ-OH)]2 dimer is formed. The process is probably assisted by a redox reaction involving the second iridium(III) center in the dimer. The electrochemical and photophysical properties of complexes A and B were investigated in comparison with the well-known fac-[Ir(ppy)3] analogue (C). Complex A displays a green emission (λmax = 545 nm) with a photoluminescence quantum yield (PLQY) of nearly 40%, whereas the oxygen-free counterpart B is poorly emissive, exhibiting an orange emission (λmax = 605 nm) with a PLQY below 10%. These findings may pave the way for the direct synthesis of neutral luminescent complexes with the general formula [Ir(C^N)2(OC^N)], even using dimers with non-commercial or highly substituted C^N ligands, without the need for synthesizing the corresponding hydroxyl-substituted ancillary ligand, which may be hardly obtainable.

2.
Free Radic Res ; 57(2): 115-129, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37158401

RESUMEN

This review highlights the progress made in recent years in harnessing the peculiar chemistry of the hydroperoxyl, or perhydroxyl, radical (HOO•) during lipid peroxidation, particularly with regard to its interaction with antioxidants. The HOO• radical, the protonated form of superoxide, plays an important role in the propagation and termination of lipid peroxidation in nonaqueous systems. However, differently from alkylperoxyl (ROO•) radicals that have only oxidizing ability, HOO• has a two-faced oxidizing and reducing activity. The HOO• radical can reduce the radical of the antioxidant (phenols and aromatic amines) by H-atom transfer (A• + HOO• ⟶ AH + O2) thus increasing the length of the inhibition period and the effectiveness of the antioxidant. The simultaneous presence of HOO• and ROO• radicals triggers the catalytic antioxidant activity of quinones and nitroxides and explains the antioxidant activity of melanin-like polymers. The HOO• radical can be formed by fragmentation of ROO• radicals deriving from amines, alcohols, substituted alkenes and may be present at low concentrations in many oxidizing systems. Pro-aromatic compounds, like the natural essential oil component γ-terpinene, are the most effective sources of HOO• and behave as co-antioxidants in the presence of nitroxides or quinones. The future developments and applications of HOO• chemistry in the context of the inhibition of autoxidation are also discussed.


Asunto(s)
Antioxidantes , Sustancias Reductoras , Antioxidantes/farmacología , Oxidación-Reducción , Peroxidación de Lípido , Aminas , Radicales Libres/química
3.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677790

RESUMEN

Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans.


Asunto(s)
Antioxidantes , Lignanos , Antioxidantes/farmacología , Antioxidantes/química , Lignanos/farmacología , Lignanos/química , Fenoles/farmacología , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/farmacología , Radicales Libres
4.
Inorg Chem ; 62(5): 2456-2469, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36696253

RESUMEN

A novel 1,2-azaborine (i.e., 4-methyl-2-(pyridin-2-yl)-2,1-borazaronaphthalene, 1a) has been synthesized and used for the first time as a B-N alternative to common cyclometalating ligands to obtain neutral phosphorescent iridium(III) complexes (i.e., 2a, 3, and 4) of general formula [Ir(C∧N)2(N∧NB)], where C∧N indicates three different cyclometalating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline). Moreover, the azaborine-based complex 2a was compared to the isoelectronic C═C iridium(III) complex 2b, obtained using the corresponding 2-(naphthalen-2-yl)pyridine ligand 1b. Due to the dual cyclometalation mode of such C═C ligand, the isomeric complex 2c was also obtained. All new compounds have been fully characterized by NMR spectroscopy and high-resolution mass spectrometry (MS), and the X-ray structure of 2a was determined. The electronic properties of both ligands and complexes were investigated by electrochemical, density functional theory (DFT), and photophysical methods showing that, compared to the naphthalene analogues, the azaborine ligand induces a larger band gap in the corresponding complexes, resulting in increased redox gap (basically because of the highest occupied molecular orbital (HOMO) stabilization) and blue-shifted emission bands (e.g., λmax = 523 vs 577 nm for 2a vs 2b, in acetonitrile solution at 298 K). On the other hand, the 3LC nature of the emitting state is the same in all complexes and remains centered on the pyridyl-borazaronaphthalene or its C═C pyridyl-naphthalene analogue. As a consequence, the quantum yields of such azaborine-based complexes are comparable to those of the more classical C═C counterparts (e.g., photoluminescence quantum yield (PLQY) = 16 vs 22% for 2a vs 2b, in acetonitrile solution at 298 K) but with enhanced excited-state energy. This proves that such type of azaborine ligands can be effectively used for the development of novel classes of photoactive transition-metal complexes for light-emitting devices or photocatalytic applications.

5.
Biomolecules ; 12(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36139004

RESUMEN

Microcrystalline cellulose (MCC) is an emerging material with outstanding properties in many scientific and industrial fields, in particular as an additive in composite materials. Its surface modification allows for the fine-tuning of its properties and the exploitation of these materials in a plethora of applications. In this paper, we present the covalent linkage of a luminescent Ir-complex onto the surface of MCC, representing the first incorporation of an organometallic luminescent probe in this biomaterial. This goal has been achieved with an easy and sustainable procedure, which employs a Bronsted-acid ionic liquid as a catalyst for the esterification reaction of -OH cellulose surface groups. The obtained luminescent cellulose microcrystals display high and stable emissions with the incorporation of only a small amount of iridium (III). Incorporation of MCC-Ir in dry and wet matrices, such as films and gels, has been also demonstrated, showing the maintenance of the luminescent properties even in possible final manufacturers.


Asunto(s)
Líquidos Iónicos , Iridio , Materiales Biocompatibles , Celulosa/química , Líquidos Iónicos/química , Iridio/química , Luminiscencia
6.
Inorg Chem ; 61(22): 8509-8520, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35609179

RESUMEN

Five cationic iridium(III) complexes (1-5) were synthesized exploiting two triazole-based cyclometalating ligands, namely, 1-methyl-4-phenyl-1H-1,2,3-triazole (A) and the corresponding mesoionic carbene 1,3-dimethyl-4-phenyl-1H-1,2,3-triazol-5-ylidene (B). From the combination of these two ligands and the ancillary one, i.e., 4,4'-di-tert-butyl-2,2'-bipyridine (for 1-3) or tert-butyl isocyanide (for 4 and 5), not only the typical bis-heteroleptic complexes but also the much less explored tris-heteroleptic analogues (2 and 5) could be synthesized. The redox and emission properties of all of the complexes are effectively fine-tuned by the different ligands: (i) cyclometalating ligand A induces a stronger highest occupied molecular orbital (HOMO) stabilization compared to B and leads to complexes with progressively narrower HOMO-lowest unoccupied molecular orbital (LUMO) and redox gaps, and lower emission energy; (ii) complexes 1-3, equipped with the bipyridine ancillary ligand, display fully reversible redox processes and emit from predominantly metal-to-ligand charge transfer (MLCT) states with high emission quantum yields, up to 60% in polymeric matrix; (iii) complexes 4 and 5, equipped with high-field isocyanide ligands, display irreversible redox processes and high-energy emission from strongly ligand-centered triplets with long emission lifetimes but relatively low quantum yields (below 6%, both in room-temperature solution and in solid state). This work demonstrates the versatility of phenyl-triazole derivatives as cyclometalating ligands with different chelation modes (i.e., C∧N and C∧C:) for the synthesis of photoactive iridium(III) complexes with highly tunable properties.

7.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34679687

RESUMEN

This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.

8.
Molecules ; 26(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34500670

RESUMEN

Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M-1s-1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M-1s-1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.


Asunto(s)
Antioxidantes/química , Aceites Volátiles/química , Fenoles/química , Cinnamomum zeylanicum/química , Cromatografía de Gases y Espectrometría de Masas , Origanum/química , Peróxidos/química
9.
ACS Appl Mater Interfaces ; 13(27): 31996-32004, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34156238

RESUMEN

Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.

10.
Chemphyschem ; 22(14): 1446-1454, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34033195

RESUMEN

Helical shaped fused bis-phenothiazines 1-9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+ ) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5-9 with peroxyl radicals (ROO. ) occurs with a 'classical' HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1-4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+ . Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH ), and kinetic constants (kinh ) of the reactions with ROO. species of helicenes 1-9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.

11.
Angew Chem Int Ed Engl ; 60(28): 15220-15224, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33876878

RESUMEN

Melanins are stable and non-toxic biomaterials with a great potential as chemopreventive agents for diseases connected with oxidative stress, but the mechanism of their antioxidant action is unclear. Herein, we show that polydopamine (PDA), a well-known synthetic melanin, becomes an excellent trap for alkylperoxyl radicals (ROO. , typically formed during autoxidation of lipid substrates) in the presence of hydroperoxyl radicals (HOO. ). The key reaction explaining this peculiar antioxidant activity is the reduction of the ortho-quinone moieties present in PDA by the reaction with HOO. . This reaction occurs via a H-atom transfer mechanism, as demonstrated by the large kinetic solvent effect of the reaction of a model quinone (3,5-di-tert-butyl-1,2-benzoquinone) with HOO. (k=1.5×107 and 1.1×105  M-1 s-1 in PhCl and MeCN). The chemistry disclosed herein is an important step to rationalize the redox-mediated bioactivity of melanins and of quinones.


Asunto(s)
Antioxidantes/química , Hidrógeno/química , Indoles/química , Peróxidos/química , Polímeros/química , Quinonas/química , Radicales Libres/química , Estructura Molecular
12.
Acc Chem Res ; 54(6): 1492-1505, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33617233

RESUMEN

Iridium(III) complexes have assumed a prominent role in the areas of photochemistry and photophysics due to the peculiar properties of both the metal itself and the ligand environment that can be assembled around it. Ir(III) is larger, heavier, and bears a higher ionic charge than its analogue and widely used d6 ions such as Fe(II) and Ru(II). Accordingly, its complexes exhibit wider ligand-field d-d orbital splitting with electronic levels centered on the metal, typically nonemissive and photodissociative, not playing a relevant role in excited-state deactivations. In other words, iridium complexes are typically more stable and/or more emissive than Fe(II) and Ru(II) systems. Additionally, the particularly strong heavy-atom effect of iridium promotes singlet-triplet transitions, with characteristic absorption features in the UV-vis and relatively short excited-state lifetimes of emissive triplet levels. Ir(III) is also a platform for anchoring ligands of rather different sorts. Its versatile chemistry includes not only coordination with classic N∧N neutral ligands but also the binding of negatively charged chelators, typically having a cyclometalating C∧N anchor. The carbon-metal bond in these systems has some degree of covalent character, but this does not preclude a localized description of the excited states of the related complexes, which can be designated as metal-centered (MC), ligand-centered (LC), or charge transfer (CT), allowing a simplified description of electronic and photophysical properties. The possibility of binding different types of ligands and making heteroleptic complexes is a formidable tool for finely tuning the nature and energy of the lowest electronic excited state of cationic Ir(III) complexes by ligand design. Herein we give an account of our work on several families of iridium complexes typically equipped with two cyclometalating bidentate ligands (C∧N), in combination with mono or bidentate "ancillary" ligands with N∧N, C∧N, and C∧C motifs. We have explored new synthesis routes for both cyclometalating and ancillary ligands, obtaining primarily cationic complexes but also some neutral or even negatively charged systems. In the domain of the ancillary ligands, we have explored isocyanides, carbenes, mesoionic triazolylidenes, and bis-tetrazolic ligands. For the cyclometalating moiety, we have investigated carbene, mesoionic triazolylidene, and tetrazolic systems. Key results of our work include new strategies to modify both cyclometalating and ancillary ligands by relocating ionic charges, the determination of new factors affecting the stability of complexes, a demonstration of subtle structural effects that strongly modify the photophysical properties, new options to get blue-greenish emitters for optoelectronic devices, and a set of ligand modifications allowing the optimization of electrochemical and excited-state properties to obtain new promising Ir(III) complexes for photoredox catalysis. These results constitute a step forward in the preparation of custom iridium-based materials crafted by excited-state engineering, which is achieved through the concerted effort of computational and synthetic chemistry along with electrochemistry and photochemistry.

13.
Food Chem ; 345: 128468, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33341300

RESUMEN

Antioxidant interactions of γ-terpinene with α-tocopherol mimic 2,2,5,7,8-pentamethyl-6-chromanol (PMHC) and caffeic acid phenethyl ester (CAPE), used as models, respectively, of mono- and poly-phenols were demonstrated by differential oximetry during the inhibited autoxidation of model substrates: stripped sunflower oil, squalene, and styrene. With all substrates, γ-terpinene acts synergistically regenerating the chain-breaking antioxidants PMHC and CAPE from their radicals, via the formation of hydroperoxyl radicals. The inhibition duration for mixtures PMHC/γ-terpinene and CAPE/γ-terpinene increased with γ-terpinene concentration, while rate constants for radical-trapping were unchanged by γ-terpinene, being 3.1 × 106 and 4.8 × 105 M-1s-1 for PMHC and CAPE in chlorobenzene (30 °C). Using 3,5-di-tert-butylcatechol and 3,5-di-tert-butyl-1,2-bezoquinone we demonstrate that γ-terpinene can reduce quinones to catechols enabling their antioxidant activity. The different synergy mechanism of γ-terpinene with mono- and poly-phenolic antioxidants is discussed and its relevance is proven in homogenous lipids using natural α-tocopherol and hydroxytyrosol as antioxidants, calling for further studies in heterogenous food products.


Asunto(s)
Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/farmacología , Peróxidos/química , Fenoles/química , Fenoles/farmacología , Polifenoles/química , Polifenoles/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Cromanos/química , Cromanos/farmacología , Sinergismo Farmacológico , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Alcohol Feniletílico/farmacología
14.
Inorg Chem ; 59(22): 16238-16250, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33125213

RESUMEN

Five cationic iridium(III) complexes with fluorinated cyclometalating tetrazole ligands [Ir(dfptrz)2L]+, where Hdfptrz = 5-(2,4-difluorophenyl)-2-methyl-2H-tetrazole and L = 2,2'-bypiridine (1F), 4,4'-ditert-butyl-2,2'-bipyridine (2F), 1,10-phenantroline (3F), 4,4'-bis(dimethylamino)-2,2'-bipyridine (4F), and tert-butyl isocyanide (5F), were prepared following a one-pot synthetic strategy based on a bis-cyclometalated solvato complex obtained via silver(I)-assisted cyclometalation, which was then reacted with the proper ancillary ligand to get the targeted complexes. The X-ray crystal structures of 2F and 4F were determined, showing that the tetrazole ligands are in a trans arrangement with respect to the iridium center. Electrochemical and photophysical properties, along with density functional theory calculations, allowed a full rationalization of the electronic properties of 1F-5F. In acetonitrile solution at 298 K, complexes 1F-3F, equipped with bipyridine and phenanthroline ligands, exhibit strong vibronically structured luminescence bands in the blue region with photoluminescence quantum yields (PLQYs) in the range 56-76%. This behavior is radically different from the nonfluorinated analogues reported previously, which emits in the green region from 3MLCT excited states. 4F shows relatively strong emission (PLQY = 40%) of charge transfer character centered on the amino-bipyridine ancillary ligand, whereas the emission of 5F is very weak (PLQY = 0.6%), further blue-shifted and attributed to the lowest ligand-centered (3LC) triplet state of the tetrazolyl cyclometalated moiety. A similar photophysical behavior is observed in PMMA at 298 K, whereas in a 77 K matrix, all of the compounds are strong emitters. This novel fluorinated phenyl-tetrazole cyclometalating ligand provides the corresponding iridium(III) complexes with a combination of excited-state energy and redox potentials that make them very promising as photoredox catalysts.

15.
J Org Chem ; 85(17): 11440-11448, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32842740

RESUMEN

The mechanism of the acid-dependent interring dehydrogenation in the conversion of the single-bonded 3-phenyl-2H-1,4-benzothiazine dimer 2 to the Δ2,2'-bi(2H-1,4-benzothiazine) scaffold of red hair pigments is disclosed herein. Integrated chemical oxidation and oxygen consumption experiments, coupled with electron paramagnetic resonance (EPR) analyses and DFT calculations, allowed the identification of a key diprotonated free-radical intermediate, which was implicated in a remarkable oxygen-dependent chain process via peroxyl radical formation and evolution to give the Δ2,2'-bi(2H-1,4-benzothiazine) dimer 3 by interring dehydrogenation. The critical requirement for strongly acidic conditions was rationalized for the first time by the differential evolution channels of isomeric peroxyl radical intermediates at the 2- versus 3-positions. These results offer for the first time a rationale to expand the synthetic scope of the double interring dehydrogenation pathway for the preparation of novel symmetric double-bond bridged captodative heterocycles.

16.
Sci Rep ; 9(1): 17219, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748620

RESUMEN

Graphite-coated magnetic cobalt nanoparticles (CoNPs) decorated with hindered phenolic antioxidant analogues of 2,6-di-tert-butyl-4-methylphenol (BHT, E321) provided easily removable nanoantioxidants capable of preventing the autoxidation of organic solvents as tetrahydrofuran (THF).

17.
J Org Chem ; 84(21): 13655-13664, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536337

RESUMEN

Pro-aromatic and volatile 1-methyl-1,4-cyclohexadiene (MeCHD) was used for the first time as a valid H-atom source in an innovative method to reduce ortho or para quinones to obtain the corresponding catechols and hydroquinones in good to excellent yields. Notably, the excess of MeCHD and the toluene formed as the oxidation product can be easily removed by evaporation. In some cases, trifluoroacetic acid as a catalyst was added to obtain the desired products. The reaction proceeds in air and under mild conditions, without metal catalysts and sulfur derivatives, resulting in an excellent and competitive method to reduce quinones. The mechanism is attributed to a radical reaction triggered by a hydrogen atom transfer from MeCHD to quinones, or, in the presence of trifluoroacetic acid, to a hydride transfer process.

18.
J Agric Food Chem ; 67(24): 6902-6910, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31132263

RESUMEN

The autoxidation kinetics of stripped sunflower oil (SSO), squalene (SQ), and p-cymene ( p-C) initiated by 2,2'-azobis(isobutyronitrile) at 303 K were investigated under controlled conditions by differential oximetry in order to build reference model systems that are representative of the natural variability of oxidizable materials, for quantitative antioxidant testing. Rate constants for oxidative chain propagation ( kp) and chain termination (2 kt) and the oxidizability ( kp/√2 kt) were measured using 2,6-di- tert-butyl-4-methoxyphenol, 2,2,5,7,8-pentamethyl-6-chromanol, BHT, and 4-methoxyphenol as reference antioxidants. Measured values of kp (M-1 s-1)/2 kt (M-1 s-1)/oxidizability (M-1/2 s-1/2) at 303 K in chlorobenzene were 66.9/3.45 × 106/3.6 × 10-2, 68.0/7.40 × 106/2.5 × 10-2, and 0.83/2.87 × 106/4.9 × 10-4, respectively, for SSO, SQ, and p-C. Quercetin, magnolol, caffeic acid phenethyl ester, and 2,4,6-trimethylphenol were investigated to validate calibrations. The distinctive usefulness of the three substrates in testing antioxidants is discussed.


Asunto(s)
Antioxidantes/análisis , Espectroscopía de Resonancia Magnética/normas , Monoterpenos/análisis , Espectrofotometría Infrarroja/normas , Escualeno/análisis , Aceite de Girasol/química , Calibración , Cimenos , Oxidación-Reducción
19.
Chemistry ; 25(38): 9108-9116, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31017702

RESUMEN

Symmetrical ditocopheryl disulfides (Toc)2 S2 and symmetrical and unsymmetrical ditocopheryl sulfides (Toc)2 S were simply prepared under remarkably mild conditions with complete control of the regiochemistry by using δ-, γ-, and ß-tocopheryl-N-thiophthalimides (Toc-NSPht) as common starting materials. The roles of sulfur atom(s), H-bond and aryl ring substitution pattern on the antioxidant profile of these new compounds, which were assembled by linking together two tocopheryl units, are also discussed.

20.
Antioxidants (Basel) ; 8(2)2019 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691231

RESUMEN

Antioxidant activity of native vitamin C (ascorbic acid, AH2) is hampered by instability in solution. Selective loading of AH2 into the inner lumen of natural halloysite nanotubes (HNT) yields a composite nanoantioxidant (HNT/AH2), which was characterized and investigated for its reactivity with the persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical and with transient peroxyl radicals in the inhibited autoxidation of organic substrates, both in organic solution (acetonitrile) and in buffered (pH 7.4) water in comparison with native AH2. HNT/AH2 showed excellent antioxidant performance being more effective than native ascorbic acid by 131% in acetonitrile and 290% (three-fold) in aqueous solution, under identical settings. Reaction with peroxyl radicals has a rate constant of 1.4 × 106 M-1 s-1 and 5.1 × 104 M-1 s-1, respectively, in buffered water (pH 7.4) and acetonitrile, at 30 °C. Results offer physical understanding of the factors governing HNT/AH2 reactivity. Improved performance of HNT/AH2 is unprecedented among forms of stabilized ascorbic acid and its relevance is discussed on kinetic grounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...