Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 118: 110-128, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924903

RESUMEN

Imbalance of collagen I expression results in severe pathologies. Apart from activation by the TGFß-receptor/Smad pathway, control of collagen I expression remains poorly understood. Here, we used human dermal fibroblasts expressing a mCherry fluorescent protein driven by endogenous COL1A1 promoter to functionally screen the kinome and phosphatome. We identify 8 negative regulators, revealing that collagen is under tonic repression. The cell surface receptor BDKRB2 represses collagen I and other pro-fibrotic genes. Interestingly, it also promotes other basal membrane ECM genes. This function is independent of the natural ligand, bradykinin, and of SMAD2/3 factors, instead requiring constant ERK1/2 repression. TGFß stimulation induces rapid BDKRB2 transcriptional downregulation. Human fibrotic fibroblasts have reduced BDKRB2 levels and enhancing its expression in keloid fibroblasts represses COL1A1. We propose that tonic signalling by BDKRB2 prevents collagen overproduction in skin fibroblasts.


Asunto(s)
Colágeno Tipo I , Piel , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Piel/metabolismo , Colágeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Receptores de Bradiquinina/metabolismo
2.
Exp Dermatol ; 32(5): 620-631, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36695185

RESUMEN

Skin ageing is an intricate physiological process affected by intrinsic and extrinsic factors. There is a demand to understand how the skin changes with age and photoexposure in individuals with Fitzpatrick skin types I-III due to accelerated photoageing and the risk of cutaneous malignancies. To assess the structural impact of intrinsic and extrinsic ageing, we analysed 14 skin parameters from the photoprotected buttock and photoexposed dorsal forearm of young and ageing females with Fitzpatrick skin types II-III (n = 20) using histomorphic techniques. Whilst the minimum viable epidermis (Emin ) remained constant (Q > 0.05), the maximum viable epidermis (Emax ) was decreased by both age and photoexposure (Q ≤ 0.05), which suggests that differences in epidermal thickness are attributed to changes in the dermal-epidermal junction (DEJ). Changes in Emax were not affected by epidermal cell proliferation. For the first time, we investigated the basal keratinocyte morphology with age and photoexposure. Basal keratinocytes had an increased cell size, cellular height and a more columnar phenotype in photoexposed sites of young and ageing individuals (Q ≤ 0.05), however no significant differences were observed with age. Some of the most striking changes were observed in the DEJ, and a decrease in the interdigitation index was observed with both age and photoexposure (Q ≤ 0.001), accompanied by a decreased height of rête ridges and dermal papilla. Interestingly, young photoexposed skin was comparable to ageing skin across many parameters, and we hypothesise that this is due to accelerated photoageing. This study highlights the importance of skin care education and photoprotection from an early age.


Asunto(s)
Envejecimiento de la Piel , Enfermedades de la Piel , Femenino , Humanos , Piel/patología , Epidermis/fisiología , Enfermedades de la Piel/patología
3.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36413951

RESUMEN

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Asunto(s)
NAD , Saccharomyces cerevisiae , Animales , Ratones , Humanos , Supervivencia Celular , Autofagia , Muerte Celular
4.
J Invest Dermatol ; 142(7): 1934-1946.e21, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34890626

RESUMEN

Understanding the changes in the skin microbiome and their relationship to host skin factors during aging remains largely unknown. To better understand this phenomenon, we collected samples for metagenomic and host skin factor analyses from the forearm, buttock, and facial skin from 158 Caucasian females aged 20‒24, 30‒34, 40‒44, 50‒54, 60‒64, and 70‒74 years. Metagenomics analysis was performed using 16S ribosomal RNA gene sequencing, whereas host sebocyte gland area, skin lipids, natural moisturizing factors, and antimicrobial peptides measurements were also performed. These analyses showed that skin bacterial diversity increased at all the skin sites with increasing age. Of the bacterial genera with an average relative abundance >1%, only Lactobacillus and Cutibacterium demonstrated a significant change (decrease) in abundance at all sampled skin sites with increasing age. Additional bacterial genera demonstrated significant age- and site-specific changes in abundance. Analysis of sebocyte area, natural moisturizing factors, lipids, and antimicrobial peptides showed an age-related decrease in sebocyte area and increases in natural moisturizing factors/antimicrobial peptides/skin lipids, all of which correlated with changes in specific bacterial genera. In conclusion, the human skin microbiome undergoes age-associated alterations that may reflect underlying age-related changes in cutaneous biology.


Asunto(s)
Microbiota , Adulto , Envejecimiento , Bacterias/genética , Femenino , Humanos , Lípidos , Metagenómica , Microbiota/genética , ARN Ribosómico 16S/genética , Piel/microbiología
5.
PLoS One ; 16(11): e0260095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843523

RESUMEN

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.


Asunto(s)
Expresión Génica/efectos de la radiación , Rejuvenecimiento/fisiología , Cicatrización de Heridas/genética , Adulto , Envejecimiento/genética , Biopsia , Células Epidérmicas/metabolismo , Células Epidérmicas/efectos de la radiación , Epidermis/efectos de la radiación , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Terapia por Láser/métodos , Persona de Mediana Edad , ARN , Piel/metabolismo , Transcriptoma/genética
6.
PLoS One ; 16(10): e0258554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34665817

RESUMEN

At birth, human infants are poised to survive in harsh, hostile conditions. An understanding of the state of newborn skin development and maturation is key to the maintenance of health, optimum response to injury, healing and disease. The observational study collected full-thickness newborn skin samples from 27 infants at surgery and compared them to skin samples from 43 adult sites protected from ultraviolet radiation exposure, as the standard for stable, mature skin. Transcriptomics profiling and gene set enrichment analysis were performed. Statistical analysis established over 25,000 differentially regulated probe sets, representing 10,647 distinct genes, in infant skin compared to adult skin. Gene set enrichment analysis showed a significant increase in 143 biological processes (adjusted p < 0.01) in infant skin, versus adult skin samples, including extracellular matrix (ECM) organization, cell adhesion, collagen fibril organization and fatty acid metabolic process. ECM organization and ECM structure organization were the biological processes in infant skin with the lowest adjusted P-value. Genes involving epidermal development, immune function, cell differentiation, and hair cycle were overexpressed in adults, representing 101 significantly enriched biological processes (adjusted p < 0.01). The processes with the highest significant difference were skin and epidermal development, e.g., keratinocyte differentiation, keratinization and cornification intermediate filament cytoskeleton organization and hair cycle. Enriched Gene Ontology (GO) biological processes also involved immune function, including antigen processing and presentation. When compared to ultraviolet radiation-protected adult skin, our results provide essential insight into infant skin and its ability to support the newborn's preparedness to survive and flourish, despite the infant's new environment laden with microbes, high oxygen tension and potential irritants. This fundamental knowledge is expected to guide strategies to protect and preserve the features of unperturbed, young skin.


Asunto(s)
Perfilación de la Expresión Génica , Adulto , Humanos , Lactante , Recién Nacido , Rayos Ultravioleta
7.
Cells ; 10(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066027

RESUMEN

Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.


Asunto(s)
Biomimética , Epidermis/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Núcleo Celular , Proliferación Celular , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Hidrogeles/química , Técnicas In Vitro , Mecanotransducción Celular , Lámina Nuclear/metabolismo , Ósmosis , Presión Osmótica , Presión , Piel/patología , Estrés Mecánico
8.
Pediatr Res ; 89(5): 1208-1215, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32599611

RESUMEN

BACKGROUND: The objective of this study was to measure skin characteristics in premature (PT), late preterm (LPT), and full-term (FT) neonates compared with adults at two times (T1, T2). METHODS: Skin samples of 61 neonates and 34 adults were analyzed for protein biomarkers, natural moisturizing factor (NMF), and biophysical parameters. Infant groups were: <34 weeks (PT), 34-<37 weeks (LPT), and ≥37 weeks (FT). RESULTS: Forty proteins were differentially expressed in FT infant skin, 38 in LPT infant skin, and 12 in PT infant skin compared with adult skin at T1. At T2, 40 proteins were differentially expressed in FT infants, 38 in LPT infants, and 54 in PT infants compared with adults. All proteins were increased at both times, except TMG3, S100A7, and PEBP1, and decreased in PTs at T1. The proteins are involved in filaggrin processing, protease inhibition/enzyme regulation, and antimicrobial function. Eight proteins were decreased in PT skin compared with FT skin at T1. LPT and FT proteins were generally comparable at both times. Total NMF was lower in infants than adults at T1, but higher in infants at T2. CONCLUSIONS: Neonates respond to the physiological transitions at birth by upregulating processes that drive the production of lower pH of the skin and water-binding NMF components, prevent protease activity leading to desquamation, and increase the barrier antimicrobial properties. IMPACT: Neonates respond to the transitions at birth by upregulating processes that drive the production of lower pH of the skin and NMF, prevent protease activity leading to desquamation, and increase the antimicrobial properties of the barrier. The neonatal epidermal barrier exhibits a markedly different array of protein biomarkers both shortly after birth and 2-3 months later, which are differentially expressed versus adults. The major biomarker-functional classes included filaggrin processing, protease inhibitor/enzyme regulators, antimicrobials, keratins, lipids, and cathepsins. The findings will guide improvement of infant skin care practices, particularly for the most premature infants with the ultimate goals mitigating nosocomial infection.


Asunto(s)
Envejecimiento/fisiología , Absorción Cutánea , Adulto , Biomarcadores/metabolismo , Fenómenos Biofísicos , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Proteínas/metabolismo , Proteómica/métodos
10.
Sci Rep ; 10(1): 19723, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184327

RESUMEN

Type I collagen is a key protein of most connective tissue and its up-regulation is required for wound healing but is also involved in fibrosis. Control of expression of this collagen remains poorly understood apart from Transforming Growth Factor beta (TGF-ß1)-mediated induction. To generate a sensitive, practical, robust, image-based high-throughput-compatible reporter system, we genetically inserted a short-lived fluorescence reporter downstream of the endogenous type I collagen (COL1A1) promoter in skin fibroblasts. Using a variety of controls, we demonstrate that the cell line faithfully reports changes in type I collagen expression with at least threefold enhanced sensitivity compared to endogenous collagen monitoring. We use this assay to test the potency of anti-fibrotic compounds and screen siRNAs for regulators of TGF-ß1-induced type I collagen expression. We propose our reporter cell line, Red-COLA1, as a new efficient tool to study type I collagen transcriptional regulation.


Asunto(s)
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrosis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Proteínas Luminiscentes/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Colágeno/metabolismo , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Fibroblastos/citología , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas Luminiscentes/genética , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Proteína Fluorescente Roja
11.
J Clin Med Res ; 11(11): 745-759, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31803317

RESUMEN

BACKGROUND: The study aimed to determine the effect of menopausal status and hormone therapy on the introitus and labia majora at the levels of histology and gene expression. METHODS: Three cohorts of 10 women each (pre-menopause, post-menopause and post-menopause + hormone therapy) were selected based on the presentation of clinical atrophy and vaginal pH. Biopsies were obtained from the introitus (fourchette) and labia majora and processed for histology and gene expression analyses with microarrays. Other data collected included self-assessed symptoms, serum estradiol, testosterone, serum hormone binding globulin and the pH of the vagina and labia majora. RESULTS: The introitus appears exquisitely sensitive to hormone status. Dramatic changes were observed in histology including a thinning of the epithelium in post-menopausal subjects with vaginal atrophy. Furthermore, there was differential expression of many genes that may contribute to tissue remodeling in the atrophic introitus. Levels of expression of genes associated with wound healing, angiogenesis, cell migration/locomotion, dermal structure, apoptosis, inflammation, epithelial cell differentiation, fatty acid, carbohydrate and steroid metabolism were significantly different in the cohort exhibiting atrophy of the introitus. While changes were also observed at the labia, that site was considerably less sensitive to hormone status. The gene expression changes observed at the introitus in this study were very similar to those reported previously in the atrophic vagina providing further evidence that these changes are associated with atrophy. CONCLUSIONS: The histological and gene expression changes occurring within the introitus after menopause may contribute to the constellation of symptoms that constitute the genitourinary syndrome of menopause.

12.
Bioinformatics ; 34(21): 3702-3710, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790940

RESUMEN

Motivation: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. Results: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional 'composite' tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-ß over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. Availability and implementation: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command 'pip install pycotools' or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Documentación , Programas Informáticos , Fibroblastos
13.
J Am Acad Dermatol ; 78(1): 29-39.e7, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146147

RESUMEN

BACKGROUND: Intrinsic and extrinsic factors, including ultraviolet irradiation, lead to visible signs of skin aging. OBJECTIVE: We evaluated molecular changes occurring in photoexposed and photoprotected skin of white women 20 to 74 years of age, some of whom appeared substantially younger than their chronologic age. METHODS: Histologic and transcriptomics profiling were conducted on skin biopsy samples of photoexposed (face and dorsal forearm) or photoprotected (buttocks) body sites from 158 women. 23andMe genotyping determined genetic ancestry. RESULTS: Gene expression and ontologic analysis revealed progressive changes from the 20s to the 70s in pathways related to oxidative stress, energy metabolism, senescence, and epidermal barrier; these changes were accelerated in the 60s and 70s. The gene expression patterns from the subset of women who were younger-appearing were similar to those in women who were actually younger. LIMITATIONS: Broader application of these findings (eg, across races and Fitzpatrick skin types) will require further studies. CONCLUSIONS: This study demonstrates a wide range of molecular processes in skin affected by aging, providing relevant targets for improving the condition of aging skin at different life stages and defining a molecular pattern of epidermal gene expression in women who appear younger than their chronologic age.


Asunto(s)
Predisposición Genética a la Enfermedad , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/fisiología , Rayos Ultravioleta/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Biopsia con Aguja , Dermatosis Facial/genética , Dermatosis Facial/patología , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Envejecimiento de la Piel/patología , Población Blanca , Adulto Joven
14.
Virology ; 486: 146-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437235

RESUMEN

Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Infecciones por Picornaviridae/virología , Rhinovirus/fisiología , Apoptosis , Bronquios/citología , Bronquios/inmunología , Bronquios/virología , Células Epiteliales/citología , Células Epiteliales/virología , Humanos , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/fisiopatología , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/fisiopatología
15.
J Dermatol Sci ; 78(3): 173-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862149

RESUMEN

BACKGROUND: The barrier function of the epidermis is integral to personal well-being, and defects in the skin barrier are associated with several widespread diseases. Currently there is a limited understanding of system-level proteomic changes during epidermal stratification and barrier establishment. OBJECTIVE: Here we report the quantitative proteogenomic profile of an in vitro reconstituted epidermis at three time points of development in order to characterize protein changes during stratification. METHODS: The proteome was measured using data-dependent "shotgun" mass spectrometry and quantified with statistically validated label-free proteomic methods for 20 replicates at each of three time points during the course of epidermal development. RESULTS: Over 3600 proteins were identified in the reconstituted epidermis, with more than 1200 of these changing in abundance over the time course. We also collected and discuss matched transcriptomic data for the three time points, allowing alignment of this new dataset with previously published characterization of the reconstituted epidermis system. CONCLUSION: These results represent the most comprehensive epidermal-specific proteome to date, and therefore reveal several aspects of barrier formation and skin composition. The limited correlation between transcript and protein abundance underscores the importance of proteomic analysis in developing a full understanding of epidermal maturation.


Asunto(s)
Epidermis/metabolismo , Proteómica , Humanos , Técnicas In Vitro , Proyectos Piloto , Uniones Estrechas/fisiología , Transcriptoma
16.
PLoS Comput Biol ; 10(11): e1003914, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375120

RESUMEN

The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative regulation will drive a bifurcation which may represent transition into a pathological state such as hair miniaturization.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Cabello/fisiología , Modelos Biológicos , Animales , Biología Computacional , Células Epiteliales/metabolismo , Cabello/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Cells ; 3(2): 616-26, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24921186

RESUMEN

Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.

18.
J Dermatol Sci ; 73(3): 187-97, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24314759

RESUMEN

BACKGROUND: Barrier function is integral to the health of epithelial tissues. Currently, there is a broad need to develop and improve our knowledge with regard to barrier function for reversal of mild skin irritation and dryness. However, there are few in vitro models that incorporate modulations of both lipids and epidermal differentiation programs for pre-clinical testing to aid in the understanding of barrier health. OBJECTIVE: We have generated a reconstituted epidermis on a decellularized dermis (DED) and characterized its barrier properties relative to human epidermis in order to determine its utility for modeling barrier formation and repair. METHODS: We followed the process of epidermal differentiation and barrier formation through immunocytochemistry and transcriptional profiling. We examined barrier functionality through measurements of surface pH, lipid composition, stratum corneum water content, and the ability to demonstrate topical dose-dependent exclusion of surfactant. RESULTS: Transcriptional profiling of the epidermal model during its formation reveals temporal patterns of gene expression associated with processes regulating barrier function. The profiling is supported by gradual formation and maturation of a stratum corneum and expression of appropriate markers of epidermis development. The model displays a functional barrier and a water gradient between the stratum corneum and viable layers, as determined by confocal Raman spectroscopy. The stratum corneum layer displays a normal acidic pH and an appropriate composition of barrier lipids. CONCLUSION: The epidermal model demonstrates its utility as an investigative tool for barrier health and provides a window into the transcriptional regulation of multiple aspects of barrier formation.


Asunto(s)
Epidermis/fisiología , Perfilación de la Expresión Génica , Diferenciación Celular , Células Cultivadas , Desmosomas/fisiología , Humanos , Metabolismo de los Lípidos , Lípidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...