Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123192, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37542869

RESUMEN

Urolithiasis is one of most common renal disorders, characterized by the formation of kidney stones (renal calculi) through the crystallization process within the urinary system. The frequently observed renal calculi are calcium oxalate renal calculi and treatment is done by shock wave method or lithotripsy which is harmful for other cells of the internal system. The objective of this work was to evaluate in vitro diagnosis of calcium oxalate kidney stones in the aqueous solution of Bryophyllum pinnatum. The B. pinnatum powder was mixed in apple cider vinegar and lemon juice separately to make solution 1 and 2 respectively. Apple cider vinegar and lemon juice were used as solvents due to their acidic and body compatible nature. Two surgically removed stones was dipped in solution 1 and 2. After two weeks, kidney stone of weight 2.7 g is completely dissolved in solution 2 while a considerable weight reduction of other kidney stone has been observed in solution 1. Fourier transform infrared (FTIR) spectroscopy results show the presence of two strong absorption peaks at 610 and 912 (cm-1) in both solutions after dissolution of urinary stones are related to calcium oxalate dehydrate (COD). Raman spectra further confirm the dissolution of COD in solution having Raman shifts at 504 and 910 (cm-1). Cluster formation and aggregation of particles has been observed in scanning electron microscopy images. This in vitro study proves that a mixture of Bryophyllum pinnatum powder and lemon juice is a best remedy to remove kidney stones.


Asunto(s)
Kalanchoe , Cálculos Renales , Cálculos Urinarios , Humanos , Oxalato de Calcio , Polvos , Ácido Acético , Cálculos Urinarios/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
Materials (Basel) ; 16(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37512285

RESUMEN

In this study, ZnO nanoparticles (NPs) were synthesized in the presence of almond oil at various molar ratios of zinc acetate and sodium hydroxide, including 0.5:1, 0.75:1, 1:1, 1.25:1, and 1.5:1, to obtain pH values of 11, 10, 9, 8, and 7, respectively. The XRD results revealed that ZnO NPs exhibit a hexagonal structure, with high crystallinity. SEM results showed that dense and large sized ZnO NPs were formed at pH 11, and relatively small (~30-40 nm) NPs were obtained at pH 9. The size distribution can be explained in terms of the presence of OH- ions at different pH levels. However, the larger size of the NPs at pH 7 compared to those at pH 8-11 were due to the coalescence of NPs suitable for antioxidant/antibacterial activities. ZnO NPs demonstrated a high degradation efficiency (~93%) in 90 min, with a high rate constant for Methyl Orange (MO), which is better than the previously reported rate. The larger sized almond oil capped ZnO NPs also showed excellent radical scavenging activity (94%) and are proven to be good carriers to resist Escherichia coli (E. coli) bacteria.

3.
Bioprocess Biosyst Eng ; 45(12): 1993-2006, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36326885

RESUMEN

Rapid increase in population and development in industry causes many problems such as microbial contaminations and chronic diseases such as diabetes. Materials synthesized at nanoscale are novel antidiabetic and antimicrobial agents. ZnO nanoparticles with macropores characteristics are synthesized by green methods. Turmeric, clove buds and green tea extracts are used as additives. X-ray diffraction results confirmed the hexagonal wurtzite structure of ZnO nanoparticles and crystallinity was quit high in case of green tea extract. Sample synthesized with clove shows relatively higher crystallite size (10.64) which is pertaining to variation in Zn2+ and OH- ions. The nanoparticles are more or less spherical in nature, macropores and clustered together revealed by SEM images. Macroporosity of the sample was further confirmed by nitrogen adsorption-desorption isotherm. The deep absorption band at 605 cm-1 in FTIR spectra attributed the wurtzite-type ZnO. The major dominating sharp peak was detected at 437 cm-1 in Raman spectra which is a feature of the wurtzite hexagonal phase ZnO. UV-Vis spectra showed red shift from wavelength 362 to 375 nm with different plant extracts. Impedance analysis showed a high dielectric constant and low tangent loss in case of green tea extract. ZnO synthesized using green tea exhibited ~ 95% α-glucosidase inhibition activity and 91% α-amylase inhibition activity. Antibacterial results revealed that synthesized ZnO nanoparticles showed activity against Bacillus subtilis and E. coli with inhibition zone 35 mm and 29 mm, respectively.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Hipoglucemiantes , Escherichia coli , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
4.
Materials (Basel) ; 15(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35806499

RESUMEN

Biogenic routes for the synthesis of nanoparticles are environmentally friendly, nontoxic, biocompatible, and cost-effective compared to traditional synthesis methods. In this study, cobalt ferrite was synthesized using Zingiber officinale and Elettaria cardamom Seed extracts. Effect of copper contents (x = 0.0, 0.3, 0.6 and 0.9) on the plant extracted Cux(Co1-xFe2O4) was investigated by XRD, SEM, EDX, UV-Vis., PL, FE-SEM, FTIR and photocatalytic activity. XRD results revealed that nanoparticles exhibit a cubical spinel structure with an average diameter of 7-45 nm, calculated by the Debye Scherer formula. The value of the lattice parameter decreased from 8.36 Å to 8.08 Å with substitution of copper, which can be attributed to mismatch of ionic radii of Cu2+ (0.73 Å) and Co2+ (0.74 Å) ions. SEM analysis showed that nanoparticles exhibit a spherical shape (~13 nm diameter) for undoped samples and low Cu concentration, while they changed to a hexagonal structure at higher Cu concentration (x = 0.9) with a diameter ~46 nm and a decreased degree of agglomeration. FE-SEM further confirmed the nanoparticles' size and shape. EDX analysis confirmed the presence of cobalt, iron, and oxygen without contamination. The optical absorption spectra of UV-vis and PL showed red-shift, which can be accredited to larger crystalline sizes of nanoparticles. FTIR spectra showed two main bands at 410 and 605 cm-1, indicating the presence of intrinsic vibrations of the octahedral and tetrahedral complexes, respectively. The photocatalytic activity of Co0.4Cu0.6 Fe2O4 nanoparticles was investigated using methylene blue (MB) and methyl orange (MO) dyes under visible light irradiation. The degradation rate (93.39% and 83.15%), regression correlation coefficient (0.9868 and 0.9737) and rate constant (0.04286 and 0.03203 rate·min-1) were calculated for MB and MO, respectively. Mechanisms for the formation and photocatalytic activity of Cu-substituted plant-extracted cobalt ferrite were discussed. The Co0.4Cu0.6 Fe2O4 nanoferrite was found to be an efficient photocatalyst, and can be exploited for wastewater treatment applications for MB/MO elimination.

5.
J Mech Behav Biomed Mater ; 127: 105070, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074734

RESUMEN

The purpose of current work of is to organize stabilized tetragonal zirconia (t-ZrO2) nano-particles with microwave abetted sol-gel technique. To increase the stability and shrink the crystal size, both microwave (MW) and gelatin components are used as structure guiding methods. Gelatin was used with the aim of bone implantations, as raw materials used in gelatin production are cattle bones. It contains purified collagen protein (a main protein that in the extracellular matrix found in the body's various connective tissues) that also helps in implantations and repairing. Moreover, MW heating provides a uniform heating and control of microstructures. Zirconium oxychloride was used as precursor of zirconium Effect of gelatin contents (1g, 2g, 3g, 4g and 5g) was observed. X-ray diffraction (XRD) analysis attributes the presence of phase pure t-ZrO2 at low gelatin content 3g with crystallite size ∼6.68296 nm. Formation of phase pure t-ZrO2 without post heat treatment is due to sufficient amount of gelatin to coat the zirconia crystals. Relatively higher x-ray density has been observed in case of phase pure t-ZrO2 at 5g of gelatin content. Value of the hardness is increasing from 1263 to 1443 HV with gelatin content due to phase strengthening. Raman shift presents characteristic peak at 148 cm-1 of tetragonal zirconia. Phase fraction calculated from Raman spectra is in good agreement with XRD data. At 3g of gelatin content porous structure has been observed in scanning electron microscope images. This porosity decreases with gelatin content and the distribution of particles is more uniform, and dispersion is better. The porosity of the samples decreases and reaching a minimum value at 5g of gelatin content, at which the sample was the densest. The size of nanoparticles is in the range of 500-600 nm. Optimized t-ZrO2 is soaked in stimulated body fluid (SBF) for 1, 2, 4, 8, 12, 18 and 24 weeks. Slight variation in weight and hardness has been observed even after 24 weeks of soaking.


Asunto(s)
Nanopartículas , Circonio , Animales , Bovinos , Gelatina , Microondas , Nanopartículas/química , Circonio/química
6.
Mater Sci Eng C Mater Biol Appl ; 120: 111653, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545821

RESUMEN

Demand of bioactive materials that may create a bacteria-free environment while healing and regenerating the defect area is increasing day by day. Zirconia is a very interesting material because of its biocompatibility and high fracture toughness. In this research work, zirconia nanoparticles (NPs) have been synthesized using sol-gel method. Molarity of sols is varied in the range of 25 to 125 mM. The effect of acidic and basic nature of sols is studied by maintaining acidic (2) and basic (9) pH. As-synthesized NPs are made soluble in deionized (DI) water using tangerine drops. Dissolved NPs are spin coated onto glass substrate prior to characterization. Pure tetragonal phase, observed under all conditions using basic medium (pH 9), is accompanied by smaller crystallite size and unit cell volume. Presence of stabilized zirconia phase leads to higher value of density and higher mechanical strength. Nanodendrites with distinct features are observed for the sample prepared with high molarity using basic medium. Whereas, soft agglomerated nanodendrites are observed using acidic medium. Optical properties show transmission of 60-80% in the visible and infrared regions for acidic based samples and ~84% for basic samples. Direct energy band gap is varied from 4.96 eV to 5.1 eV in acidic (pH 2) and 4.91 eV to 4.97 eV in basic (pH 9) media. FTIR spectra show the formation of fundamental tetragonal band at 490 cm-1 for basic samples. Antibacterial response of zirconia is tested against E. coli, Streptococcus and Bacillus bacteria. Human teeth, bare and zirconia coated, are tested for their possible weight loss after dipping in various beverages. Zirconia coated tooth shows negligible degradation in hardness and weight after 24 hr dipping period. Thus, coatings prepared using water soluble zirconia (WSZ) nanoparticles, without the use of toxic solvents/reagents, are promising material to be used as protective coatings in biomedical applications.


Asunto(s)
Escherichia coli , Nanopartículas , Dureza , Humanos , Ensayo de Materiales , Propiedades de Superficie , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA