Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745327

RESUMEN

Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.

2.
Cell ; 186(18): 3810-3825.e18, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37552983

RESUMEN

A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Factores de Transcripción/genética , Saccharomyces cerevisiae/genética , Genoma
3.
Elife ; 122023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212240

RESUMEN

Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Receptores ErbB/metabolismo , Proliferación Celular , Fosforilación
4.
Biomaterials ; 296: 122076, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931102

RESUMEN

The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Ecosistema , Osteosarcoma/patología , Neoplasias Óseas/patología , Interleucina-6/metabolismo , Doxorrubicina/uso terapéutico , Resistencia a Medicamentos , Inflamación , Microambiente Tumoral
5.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36993481

RESUMEN

Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.

6.
Nat Rev Drug Discov ; 21(9): 655-675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35637318

RESUMEN

Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Edición Génica , Humanos
7.
J Mater Chem B ; 9(24): 4906-4914, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34100486

RESUMEN

We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria-nanostructure interfacing experiments.


Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Viabilidad Microbiana/efectos de los fármacos , Nanocables , Silicio/química , Silicio/farmacología , Biotransformación/efectos de los fármacos , Escherichia coli/metabolismo , Propiedades de Superficie
9.
J Vis Exp ; (147)2019 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-31157778

RESUMEN

Continuous culture methods enable cells to be grown under quantitatively controlled environmental conditions, and are thus broadly useful for measuring fitness phenotypes and improving our understanding of how genotypes are shaped by selection. Extensive recent efforts to develop and apply niche continuous culture devices have revealed the benefits of conducting new forms of cell culture control. This includes defining custom selection pressures and increasing throughput for studies ranging from long-term experimental evolution to genome-wide library selections and synthetic gene circuit characterization. The eVOLVER platform was recently developed to meet this growing demand: a continuous culture platform with a high degree of scalability, flexibility, and automation. eVOLVER provides a single standardizing platform that can be (re)-configured and scaled with minimal effort to perform many different types of high-throughput or multi-dimensional growth selection experiments. Here, a protocol is presented to provide users of the eVOLVER framework a description for configuring the system to conduct a custom, large-scale continuous growth experiment. Specifically, the protocol guides users on how to program the system to multiplex two selection pressures - temperature and osmolarity - across many eVOLVER vials in order to quantify fitness landscapes of Saccharomyces cerevisiae mutants at fine resolution. We show how the device can be configured both programmatically, through its open-source web-based software, and physically, by arranging fluidic and hardware layouts. The process of physically setting up the device, programming the culture routine, monitoring and interacting with the experiment in real-time over the internet, sampling vials for subsequent offline analysis, and post experiment data analysis are detailed. This should serve as a starting point for researchers across diverse disciplines to apply eVOLVER in the design of their own complex and high-throughput cell growth experiments to study and manipulate biological systems.


Asunto(s)
Técnicas de Cultivo/métodos , Saccharomyces cerevisiae/citología , Programas Informáticos , Automatización , Ciclo Celular , Proliferación Celular , Fenotipo , Saccharomyces cerevisiae/genética
10.
Science ; 364(6440): 593-597, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31000590

RESUMEN

Eukaryotic genes are regulated by multivalent transcription factor complexes. Through cooperative self-assembly, these complexes perform nonlinear regulatory operations involved in cellular decision-making and signal processing. In this study, we apply this design principle to synthetic networks, testing whether engineered cooperative assemblies can program nonlinear gene circuit behavior in yeast. Using a model-guided approach, we show that specifying the strength and number of assembly subunits enables predictive tuning between linear and nonlinear regulatory responses for single- and multi-input circuits. We demonstrate that assemblies can be adjusted to control circuit dynamics. We harness this capability to engineer circuits that perform dynamic filtering, enabling frequency-dependent decoding in cell populations. Programmable cooperative assembly provides a versatile way to tune the nonlinearity of network connections, markedly expanding the engineerable behaviors available to synthetic circuits.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Genes Sintéticos , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Biología Sintética
11.
Cell ; 177(3): 521-523, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002793

RESUMEN

Synthetic refactoring makes naturally occurring regulatory systems more amenable to manipulation by removing or recoding their natural genetic complexity. Shaw et al. apply this technique to the yeast mating response pathway, creating a simplified, highly engineerable signaling module that can be used to construct precisely optimized, application-specific GPCR biosensors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Comunicación Celular , Transducción de Señal
12.
Nat Biotechnol ; 36(7): 614-623, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29889214

RESUMEN

Precise control over microbial cell growth conditions could enable detection of minute phenotypic changes, which would improve our understanding of how genotypes are shaped by adaptive selection. Although automated cell-culture systems such as bioreactors offer strict control over liquid culture conditions, they often do not scale to high-throughput or require cumbersome redesign to alter growth conditions. We report the design and validation of eVOLVER, a scalable do-it-yourself (DIY) framework, which can be configured to carry out high-throughput growth experiments in molecular evolution, systems biology, and microbiology. High-throughput evolution of yeast populations grown at different densities reveals that eVOLVER can be applied to characterize adaptive niches. Growth selection on a genome-wide yeast knockout library, using temperatures varied over different timescales, finds strains sensitive to temperature changes or frequency of temperature change. Inspired by large-scale integration of electronics and microfluidics, we also demonstrate millifluidic multiplexing modules that enable multiplexed media routing, cleaning, vial-to-vial transfers and automated yeast mating.


Asunto(s)
Bacterias/crecimiento & desarrollo , Técnicas de Cultivo de Célula/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
Annu Rev Biophys ; 47: 399-423, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29547341

RESUMEN

Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.


Asunto(s)
Biología Sintética/métodos , Humanos
14.
Proc Natl Acad Sci U S A ; 113(47): 13528-13533, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821768

RESUMEN

Many cells can sense and respond to time-varying stimuli, selectively triggering changes in cell fate only in response to inputs of a particular duration or frequency. A common motif in dynamically controlled cells is a dual-timescale regulatory network: although long-term fate decisions are ultimately controlled by a slow-timescale switch (e.g., gene expression), input signals are first processed by a fast-timescale signaling layer, which is hypothesized to filter what dynamic information is efficiently relayed downstream. Directly testing the design principles of how dual-timescale circuits control dynamic sensing, however, has been challenging, because most synthetic biology methods have focused solely on rewiring transcriptional circuits, which operate at a single slow timescale. Here, we report the development of a modular approach for flexibly engineering phosphorylation circuits using designed phospho-regulon motifs. By then linking rapid phospho-feedback with slower downstream transcription-based bistable switches, we can construct synthetic dual-timescale circuits in yeast in which the triggering dynamics and the end-state properties of the ON state can be selectively tuned. These phospho-regulon tools thus open up the possibility to engineer cells with customized dynamical control.


Asunto(s)
Ingeniería Celular , Linaje de la Célula , Regulón/genética , Saccharomyces cerevisiae/genética , Biología Sintética , Redes Reguladoras de Genes , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Transcripción Genética
15.
Nat Chem Biol ; 12(2): 82-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26641934

RESUMEN

Biocontainment systems that couple environmental sensing with circuit-based control of cell viability could be used to prevent escape of genetically modified microbes into the environment. Here we present two engineered safeguard systems known as the 'Deadman' and 'Passcode' kill switches. The Deadman kill switch uses unbalanced reciprocal transcriptional repression to couple a specific input signal with cell survival. The Passcode kill switch uses a similar two-layered transcription design and incorporates hybrid LacI-GalR family transcription factors to provide diverse and complex environmental inputs to control circuit function. These synthetic gene circuits efficiently kill Escherichia coli and can be readily reprogrammed to change their environmental inputs, regulatory architecture and killing mechanism.


Asunto(s)
Bacterias/genética , Contención de Riesgos Biológicos/métodos , Regulación Bacteriana de la Expresión Génica , Organismos Modificados Genéticamente/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Citometría de Flujo , Mutación
16.
Cell ; 158(1): 110-20, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995982

RESUMEN

The transcription of genomic information in eukaryotes is regulated in large part by chromatin. How a diverse array of chromatin regulator (CR) proteins with different functions and genomic localization patterns coordinates chromatin activity to control transcription remains unclear. Here, we take a synthetic biology approach to decipher the complexity of chromatin regulation by studying emergent transcriptional behaviors from engineered combinatorial, spatial, and temporal patterns of individual CRs. We fuse 223 yeast CRs to programmable zinc finger proteins. Site-specific and combinatorial recruitment of CRs to distinct intralocus locations reveals a range of transcriptional logic and behaviors, including synergistic activation, long-range and spatial regulation, and gene expression memory. Comparing these transcriptional behaviors with annotated CR complex and function terms provides design principles for the engineering of transcriptional regulation. This work presents a bottom-up approach to investigating chromatin-mediated transcriptional regulation and introduces chromatin-based components and systems for synthetic biology and cellular engineering.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Genes Reporteros , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética
17.
Nat Rev Microbiol ; 12(5): 381-90, 2014 05.
Artículo en Inglés | MEDLINE | ID: mdl-24686414

RESUMEN

The ability to rationally engineer microorganisms has been a long-envisioned goal dating back more than a half-century. With the genomics revolution and rise of systems biology in the 1990s came the development of a rigorous engineering discipline to create, control and programme cellular behaviour. The resulting field, known as synthetic biology, has undergone dramatic growth throughout the past decade and is poised to transform biotechnology and medicine. This Timeline article charts the technological and cultural lifetime of synthetic biology, with an emphasis on key breakthroughs and future challenges.


Asunto(s)
Ingeniería Genética/historia , Biología Sintética/historia , Biología de Sistemas/historia , Biotecnología/historia , Historia del Siglo XX , Historia del Siglo XXI
19.
Cell ; 150(3): 647-58, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863014

RESUMEN

Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Dedos de Zinc , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Biología Sintética , Factores de Transcripción/metabolismo , Transcripción Genética
20.
ACS Synth Biol ; 1(4): 118-29, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22558529

RESUMEN

The synthetic biology toolkit contains a growing number of parts for regulating transcription and translation, but very few that can be used to control protein association. Here we report characterization of 22 previously published heterospecific synthetic coiled-coil peptides called SYNZIPs. We present biophysical analysis of the oligomerization states, helix orientations, and affinities of 27 SYNZIP pairs. SYNZIP pairs were also tested for interaction in two cell-based assays. In a yeast two-hybrid screen, >85% of 253 comparable interactions were consistent with prior in vitro measurements made using coiled-coil microarrays. In a yeast-signaling assay controlled by coiled-coil mediated scaffolding, 12 SYNZIP pairs were successfully used to down-regulate the expression of a reporter gene following treatment with α-factor. Characterization of these interaction modules dramatically increases the number of available protein interaction parts for synthetic biology and should facilitate a wide range of molecular engineering applications. Summary characteristics of 27 SYNZIP peptide pairs are reported in specification sheets available in the Supporting Information and at the SYNZIP Web site [http://keatingweb.mit.edu/SYNZIP/].


Asunto(s)
Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Biología Sintética/métodos , Fenómenos Biofísicos , Transferencia Resonante de Energía de Fluorescencia , Sistema de Señalización de MAP Quinasas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...