Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241190

RESUMEN

Background and Objectives: Mucilaginous substances from plants are known to be able to support the lubricating effect of hyaluronic acid (HA) in dry eye disease (DED). In this pilot study, the combined lubricating effect of HA and mallow extract (Malva sylvestris L.) in patients with DED was assessed. Materials and Methods: Twenty patients at five ophthalmological practices in Italy were treated with eye drops containing HA and mallow extract on the one hand, and with eye drops containing HA only, on the other hand, in a two-period crossover design. As primary endpoints, the tear film breakup time (TBUT), the reduction of lissamine green staining of the ocular surface (Oxford Scheme, OS), and the safety and efficacy assessment by the ophthalmologists were evaluated. As secondary variables, the patient symptom score, the ocular surface index (OSDI) and the satisfaction, preference and efficacy assessment by the patients were evaluated. All data were analysed descriptively in addition to an exploratory analysis being made of the target variables. Results: Both products were well-tolerated. There were no statistically significant differences with regard to the TBUT, OS and OSDI between the two treatments. Anyway, the efficacy and safety assessments by the ophthalmologists and the patients showed results in favour of the combined product. Conclusion: The addition of mallow extract to HA-containing eye drops enhances the treatment of DED, at least with respect to subjective measurements. Further assessments will have to be done to prove and explain this observation in terms of measurable parameters, e.g., markers for inflammatory cytokines.


Asunto(s)
Síndromes de Ojo Seco , Ácido Hialurónico , Humanos , Ácido Hialurónico/efectos adversos , Soluciones Oftálmicas/uso terapéutico , Proyectos Piloto , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/inducido químicamente , Síndromes de Ojo Seco/diagnóstico , Italia , Lágrimas
2.
Haematologica ; 107(9): 2183-2194, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263984

RESUMEN

Multiple myeloma (MM) is an incurable hematologic neoplasm, whose poor prognosis is deeply affected by the propensity of tumor cells to localize in the bone marrow (BM) and induce the protumorigenic activity of normal BM cells, leading to events associated with tumor progression, including tumor angiogenesis, osteoclastogenesis, and the spread of osteolytic bone lesions. The interplay between MM cells and the BM niche does not only rely on direct cell-cell interaction, but a crucial role is also played by MM-derived extracellular vesicles (MM-EV). Here, we demonstrated that the oncogenic NOTCH receptors are part of MM-EV cargo and play a key role in EV protumorigenic ability. We used in vitro and in vivo models to investigate the role of EV-derived NOTCH2 in stimulating the protumorigenic behavior of endothelial cells and osteoclast progenitors. Importantly, MM-EV can transfer NOTCH2 between distant cells and increase NOTCH signaling in target cells. MM-EV stimulation increases endothelial cell angiogenic ability and osteoclast differentiation in a NOTCH2-dependent way. Indeed, interfering with NOTCH2 expression in MM cells may decrease the amount of NOTCH2 also in MM-EV and affect their angiogenic and osteoclastogenic potential. Finally, we demonstrated that the pharmacologic blockade of NOTCH activation by γ-secretase inhibitors may hamper the biological effect of EV derived by MM cell lines and by the BM of MM patients. These results provide the first evidence that targeting the NOTCH pathway may be a valid therapeutic strategy to hamper the protumorigenic role of EV in MM as well as other tumors.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Médula Ósea/patología , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Mieloma Múltiple/patología , Microambiente Tumoral
3.
Haematologica ; 105(7): 1925-1936, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31582544

RESUMEN

Multiple myeloma is still incurable due to an intrinsic aggressiveness or, more frequently, to the interactions of malignant plasma cells with the bone marrow (BM) microenvironment. Myeloma cells educate BM cells to support neoplastic cell growth, survival, acquisition of drug resistance resulting in disease relapse. Myeloma microenvironment is characterized by Notch signaling hyperactivation due to the increased expression of Notch1 and 2 and the ligands Jagged1 and 2 in tumor cells. Notch activation influences myeloma cell biology and promotes the reprogramming of BM stromal cells. In this work we demonstrate, in vitro, ex vivo and by using a zebrafish multiple myeloma model, that Jagged inhibition causes a decrease in both myeloma-intrinsic and stromal cell-induced resistance to currently used drugs, i.e. bortezomib, lenalidomide and melphalan. The molecular mechanism of drug resistance involves the chemokine system CXCR4/SDF1α. Myeloma cell-derived Jagged ligands trigger Notch activity in BM stromal cells. These, in turn, secrete higher levels of SDF1α in the BM microenvironment increasing CXCR4 activation in myeloma cells, which is further potentiated by the concomitant increased expression of this receptor induced by Notch activation. Consistently with the augmented pharmacological resistance, SDF1α boosts the expression of BCL2, Survivin and ABCC1. These results indicate that a Jagged-tailored approach may contribute to disrupting the pharmacological resistance due to intrinsic myeloma cell features or to the pathological interplay with BM stromal cells and, conceivably, improve patients' response to standard-of-care therapies.


Asunto(s)
Proteína Jagged-1/genética , Proteína Jagged-2/genética , Mieloma Múltiple , Animales , Médula Ósea , Línea Celular Tumoral , Resistencia a Medicamentos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Receptores Notch , Microambiente Tumoral , Pez Cebra , Proteínas de Pez Cebra/genética
4.
G3 (Bethesda) ; 9(10): 3359-3367, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31451549

RESUMEN

MDM2 regulates a variety of cellular processes through its dual protein:protein interaction and ubiquitin ligase activities. One major function of MDM2 is to bind and ubiquitinate P53, thereby regulating its proteasomal degradation. This function is in turn controlled by the cell fate determinant NUMB, which binds to and inhibits MDM2 via a short stretch of 11 amino acids, contained in its phosphotyrosine-binding (PTB) domain, encoded by exon 3 of the NUMB gene. The NUMB-MDM2-P53 circuitry is relevant to the specification of the stem cell fate and its subversion has been shown to be causal in breast cancer leading to the emergence of cancer stem cells. While extensive work on the evolutionary aspects of the MDM2/P53 circuitry has provided hints as to how these two proteins have evolved together to maintain conserved and linked functions, little is known about the evolution of the NUMB gene and, in particular, how it developed the ability to regulate MDM2 function. Here, we show that NUMB is a metazoan gene, which acquired exon 3 in the common ancestor of the Chordate lineage, first being present in the Cephalochordate and Tunicate subphyla, but absent in invertebrates. We provide experimental evidence showing that since its emergence, exon 3 conferred to the PTB domain of NUMB the ability to bind and to regulate MDM2 functions.


Asunto(s)
Cordados/clasificación , Cordados/genética , Exones , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Evolución Molecular , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/química , Relación Estructura-Actividad
5.
Int J Mol Sci ; 20(13)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266187

RESUMEN

Extracellular vesicles (EVs) represent a heterogeneous group of membranous structures shed by all kinds of cell types, which are released into the surrounding microenvironment or spread to distant sites through the circulation. Therefore, EVs are key mediators of the communication between tumor cells and the surrounding microenvironment or the distant premetastatic niche due to their ability to transport lipids, transcription factors, mRNAs, non-coding regulatory RNAs, and proteins. Multiple myeloma (MM) is a hematological neoplasm that mostly relies on the bone marrow (BM). The BM represents a highly supportive niche for myeloma establishment and diffusion during the formation of distant bone lesions typical of this disease. This review represents a survey of the most recent evidence published on the role played by EVs in supporting MM cells during the multiple steps of metastasis, including travel and uptake at distant premetastatic niches, MM cell engraftment as micrometastasis, and expansion to macrometastasis thanks to EV-induced angiogenesis, release of angiocrine factors, activation of osteolytic activity, and mesenchymal cell support. Finally, we illustrate the first evidence concerning the dual effect of MM-EVs in promoting both anti-tumor immunity and MM immune escape, and the possible modulation operated by pharmacological treatments.


Asunto(s)
Neoplasias Óseas/secundario , Vesículas Extracelulares/metabolismo , Mieloma Múltiple/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Comunicación Celular , Progresión de la Enfermedad , Vesículas Extracelulares/genética , Humanos , Mieloma Múltiple/genética , Escape del Tumor , Microambiente Tumoral
6.
Front Pharmacol ; 10: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873026

RESUMEN

Notch and its ligands on adjacent cells are key mediators of cellular communication during developmental choice in embryonic and adult tissues. This communication is frequently altered in the pathological interaction between cancer cells and healthy cells of the microenvironment due to the aberrant expression of tumor derived Notch receptors or ligands, that results in homotypic or heterotypic Notch signaling activation in tumor cells or surrounding stromal cells. A deadly consequence of this pathological communication is pharmacological resistance that results in patient's relapse. We will provide a survey of the role of Notch signaling in the bone marrow (BM), a microenvironment with a very high capacity to support several types of cancer, including primary cancers such as osteosarcoma or multiple myeloma and bone metastases from carcinomas. Moreover, in the BM niche several hematological malignancies maintain a reservoir of cancer stem cells, characterized by higher intrinsic drug resistance. Cell-cell communication in BM-tumor interaction triggers signaling pathways by direct contact and paracrine communication through soluble growth factors or extracellular vesicles, which can deliver specific molecules such as mRNAs, miRNAs, proteins, metabolites, etc. enabling tumor cells to reprogram the healthy cells of the microenvironment inducing them to support tumor growth. In this review we will explore how the dysregulated Notch activity contributes to tumor-mediated reprogramming of the BM niche and drug resistance, strengthening the rationale of a Notch-directed therapy to re-establish apoptosis competence in cancer.

7.
Front Immunol ; 9: 1823, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154786

RESUMEN

Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.


Asunto(s)
Citocinas/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Inmunidad Adaptativa , Animales , Biomarcadores , Línea Celular Tumoral , Senescencia Celular/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , Mediadores de Inflamación , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Ligando RANK/metabolismo
8.
J Cell Biol ; 217(2): 745-762, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29269425

RESUMEN

Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Empalme Alternativo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Curr Pharm Des ; 23(1): 108-134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27719637

RESUMEN

BACKGROUND: Notch is a multifaceted protein that plays a fundamental role in fetal development and tissue homeostasis by directing many cellular functions, including cell growth and differentiation, cell fate determination and regulation of stem cells maintenance. The Notch family consists of four receptors (Notch 1-4) and five ligands (Jagged1-2 and Delta-like 1-3-4) widely expressed in human tissues. Given the crucial contribution of Notch signaling in many physiological processes, it is not surprising that a variety of human malignancies is characterized by a dysregulation of one or more components of this pathway. METHODS: In this review, we are going to provide a broad overview on the role of Notch pathway in solid and hematological malignancies and a survey on possible Notch-directed therapeutic strategies. RESULTS: We present the most recent findings indicating that Notch signaling dysregulation in human cancers may be due to genetic and epigenetic alterations or to the interactions with other oncogenic pathways. Furthermore, Notch activity may have an oncogenic or a tumor suppressor effect. Finally, we describe the latest preclinical and clinical studies concerning the different pharmacological approaches targeting Notch. CONCLUSION: The provided evidence confirms the importance of Notch pathway in human malignancies indicating that a strong rationale exists for the development of a Notch-tailored therapy.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Receptores Notch/antagonistas & inhibidores , Antineoplásicos/química , Neoplasias Hematológicas/metabolismo , Humanos , Ligandos , Receptores Notch/metabolismo
10.
Oncotarget ; 6(29): 26826-40, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26308486

RESUMEN

Despite recent therapeutic advances, multiple myeloma (MM) is still an incurable neoplasia due to intrinsic or acquired resistance to therapy. Myeloma cell localization in the bone marrow milieu allows direct interactions between tumor cells and non-tumor bone marrow cells which promote neoplastic cell growth, survival, bone disease, acquisition of drug resistance and consequent relapse. Twenty percent of MM patients are at high-risk of treatment failure as defined by tumor markers or presentation as plasma cell leukemia. Cumulative evidences indicate a key role of Notch signaling in multiple myeloma onset and progression. Unlike other Notch-related malignancies, where the majority of patients carry gain-of-function mutations in Notch pathway members, in MM cell Notch signaling is aberrantly activated due to an increased expression of Notch receptors and ligands; notably, this also results in the activation of Notch signaling in surrounding stromal cells which contributes to myeloma cell proliferation, survival and migration, as well as to bone disease and intrinsic and acquired pharmacological resistance. Here we review the last findings on the mechanisms and the effects of Notch signaling dysregulation in MM and provide a rationale for a therapeutic strategy aiming at inhibiting Notch signaling, along with a complete overview on the currently available Notch-directed approaches.


Asunto(s)
Mieloma Múltiple/metabolismo , Receptores Notch/metabolismo , Animales , Anticuerpos Monoclonales/química , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proliferación Celular , Supervivencia Celular , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia de Células Plasmáticas/metabolismo , Ligandos , Mutación , Neoplasias/patología , Receptor Notch1/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
11.
J Pathol ; 226(5): 713-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21984373

RESUMEN

Tumour cells often express deregulated profiles of chemokine receptors that regulate cancer cell migration and proliferation. Notch1 pathway activation is seen in T cell acute lymphoblastic leukaemia (T-ALL) due to the high frequency of Notch1 mutations affecting approximately 60% of patients, causing ligand-independent signalling and/or prolonging Notch1 half-life. We have investigated the possible regulative role of Notch1 on the expression and function of chemokine receptors CCR5, CCR9 and CXCR4 that play a role in determining blast malignant properties and localization of extramedullary infiltrations in leukaemia. We inhibited the pathway through γ-Secretase inhibitor and Notch1 RNA interference and analysed the effect on the expression and function of chemokine receptors. Our results indicate that γ-Secretase inhibitor negatively regulates the transcription level of the CC chemokine receptors 5 and 9 in T-ALL cell lines and patients' primary leukaemia cells, leaving CXCR4 expression unaltered. The Notch pathway also controls CCR5- and CCR9-mediated biological effects, ie chemotaxis and proliferation. Furthermore, engaging CCR9 through CCL25 administration rescues proliferation inhibition associated with abrogation of Notch activity. Finally, through RNA interference we demonstrated that the oncogenic isoform in T-ALL, Notch1, plays a role in controlling CCR5 and CCR9 expression and functions. These findings suggest that Notch1, acting in concert with chemokine receptors pathways, may provide leukaemia cells with proliferative advantage and specific chemotactic abilities, therefore influencing tumour cell progression and localization.


Asunto(s)
Proliferación Celular , Quimiotaxis , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Receptores CCR5/metabolismo , Receptores CCR/metabolismo , Transducción de Señal , Adolescente , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proliferación Celular/efectos de los fármacos , Quimiocinas CC/metabolismo , Quimiotaxis/efectos de los fármacos , Niño , Preescolar , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Células Jurkat , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Interferencia de ARN , ARN Mensajero/metabolismo , Receptor Notch1/genética , Receptores CCR/genética , Receptores CCR5/genética , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
13.
J Cell Biochem ; 103(5): 1405-12, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17849443

RESUMEN

Notch signalling plays an important role in hematopoiesis and in the pathogenesis of T-ALL. Notch is known to interact with Ras and PTEN/PI3K (phosphoinositide-3 kinase)/Akt pathways. We investigated the interaction of Notch with these pathways and the possible reciprocal regulation of these signalling systems in T-ALL cells in vitro. Our analyses indicate that the PI3K/Akt pathway is constitutively active in the four T-ALL cell lines tested. Akt phosphorylation was not altered by the sequestration of growth factors, that is, Akt activation seems to be less dependent on but not completely independent of growth factors, possibly being not subject to negative feedback regulation. PTEN expression was not detected in 3/4 cell lines tested, suggesting the loss of PTEN-mediated Akt activation. Inhibition of the PI3K/Akt pathway arrests growth and enhances apoptosis, but with no modulation of expression of Bax-alpha and Bcl-2 proteins. We analysed the relationship between Notch-1 and the PI3K/Akt signalling and show that inhibition of the Akt pathway changes Notch expression; Notch-1 protein decreased in all the cell lines upon treatment with the inhibitor. Our studies strongly suggest that Notch signalling interacts with PI3K/Akt signalling and further that this occurs in the absence of PTEN expression. The consequences of this to the signalling outcome are yet unclear, but we have uncovered a significant inverse relationship between Notch and PI3K/Akt pathway, which leads us to postulate the operation of a reciprocal regulatory loop between Notch and Ras-PI3K/Akt in the pathogenesis of T-ALL.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Inhibidores Enzimáticos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Células Jurkat , Fosfohidrolasa PTEN/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
14.
Biochem Pharmacol ; 74(11): 1568-74, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-17868649

RESUMEN

Resveratrol (RES) is a natural occurring phytoalexin that has been shown to have chemopreventive activity. Resveratrol acts both by suppressing cell proliferation and inducing apoptosis in a variety of cancer cell lines. In this study, we show that RES induces apoptosis in MOLT-4 acute lymphoblastic leukaemia cells by modulating three different pathways that regulate cells survival and cell death. We show for the first time that RES inhibits the survival signalling pathways Notch and their down stream effector and modulates the operation of interacting signalling systems. It induces an increase in the levels of the pro-apoptotic proteins p53, its effector p21waf and Bax. We also show that RES inhibits the PI3K/Akt pathway and activates Gsk-3beta. The data presented here demonstrate unequivocally that RES induces apoptosis by inhibiting the Notch pathway and markedly influencing the operation of the interacting apoptosis pathways mediated by p53 and PI3K/Akt. These data support findings from other laboratories that have suggested the use of RES as a chemopreventive agent. Here, we have identified potential signalling pathways influenced by RES and this could lead to the identification of the targets of RES-induced apoptosis and growth control.


Asunto(s)
Apoptosis/efectos de los fármacos , Estilbenos/farmacología , Anticarcinógenos/farmacología , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Cloruro de Litio/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Resveratrol , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos , Transducción de Señal/efectos de los fármacos , Terpenos/farmacología , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Fitoalexinas
15.
J Neurosci ; 25(33): 7586-600, 2005 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16107646

RESUMEN

The vertebrate telencephalon is composed of many architectonically and functionally distinct areas and structures, with billions of neurons that are precisely connected. This complexity is fine-tuned during development by numerous genes. To identify genes involved in the regulation of telencephalic development, a specific subset of differentially expressed genes was characterized. Here, we describe a set of cDNAs encoded by genes preferentially expressed during development of the mouse telencephalon that was identified through a functional genomics approach. Of 832 distinct transcripts found, 223 (27%) are known genes. Of the remaining, 228 (27%) correspond to expressed sequence tags of unknown function, 58 (7%) are homologs or orthologs of known genes, and 323 (39%) correspond to novel rare transcripts, including 48 (14%) new putative noncoding RNAs. As an example of this latter group of novel precursor transcripts of micro-RNAs, telencephalic embryonic subtractive sequence (TESS) 24.E3 was functionally characterized, and one of its targets was identified: the zinc finger transcription factor ZFP9. The TESS transcriptome has been annotated, mapped for chromosome loci, and arrayed for its gene expression profiles during neural development and differentiation (in Neuro2a and neural stem cells). Within this collection, 188 genes were also characterized on embryonic and postnatal tissue by in situ hybridization, demonstrating that most are specifically expressed in the embryonic CNS. The full information has been organized into a searchable database linked to other genomic resources, allowing easy access to those who are interested in the dissection of the molecular basis of telencephalic development.


Asunto(s)
ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Telencéfalo/embriología , Telencéfalo/fisiología , Animales , Secuencia de Bases , Línea Celular Tumoral , Células Cultivadas , ADN Complementario/biosíntesis , Perfilación de la Expresión Génica/métodos , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Datos de Secuencia Molecular
16.
Cancer Lett ; 219(1): 113-20, 2005 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-15694671

RESUMEN

NOTCH1 is involved in the pathogenesis of T-acute lymphoblastic leukemia (T-ALL) carrying the very rare translocation t(7;9)(q34;q34.3). We analyzed the expression of genes belonging to NOTCH pathway, in acute leukemia primary samples and lymphoblastoid cell lines. NOTCH1 pathway activation represents a common feature of T-ALL when compared to acute myelogenous leukemia (AML) and B-cell precursor acute lymphoblastic leukemia. The contemporary expression of NOTCH1 and its ligands on cell surface contributes to high levels of pathway activity. AML primary samples show high levels of JAGGED1 expression despite the low NOTCH1 pathway activation, consistent with an autonomous JAGGED1 signaling in myeloid leukemogenesis.


Asunto(s)
Leucemia Linfoide/genética , Leucemia Linfoide/metabolismo , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Transducción de Señal/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Proteínas de Unión al Calcio , Cartilla de ADN , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-1 , Células Jurkat , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Notch1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged
17.
Electrophoresis ; 23(6): 926-9, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11920878

RESUMEN

Peptide nucleic acid (PNA) oligomers can be used as probes in pre-gel hybridization experiments, as an alternative to Southern hybridization. In this technique, the PNA probe is hybridized to a cyanine-5 labeled DNA sample denatured at low ionic strength, and the mixture is directly injected for size separation into a capillary electrophoresis (CE) system equipped with laser-induced fluorescence (LIF) detector. The neutral backbone of PNA allows hybridization to occur at low ionic strength and assures an efficient CE separation of the PNA/DNA hybrids from both double-stranded and single-stranded DNA. We have used as a model system the cystic fibrosis R553X and R1162X single-base mutations and we have assessed the influence of various factors, such as temperature and denaturants concentration on DNA/PNA hybrid stability in order to achieve the high specificity required for a single base pair discrimination.


Asunto(s)
Sondas de ADN , ADN/análisis , Electroforesis Capilar/métodos , Ácidos Nucleicos de Péptidos , Emparejamiento Base , Carbocianinas , Colorantes Fluorescentes , Mutagénesis
18.
Anticancer Res ; 22(6C): 4211-4, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12553058

RESUMEN

The transduction of Notch signal plays an intricate role in cell differentiation and pathogenesis of haematological malignancies as well as in certain congenital conditions. The functionality of Notch signalling was tested using HES1 gene activation. SEL1 gene product has been postulated to be a negative regulator of Notch signalling. We investigated the relationship between Notch signalling and the expression of SEL1L gene in a number of leukaemia and lymphoma cells in culture. The cell lines could be separated into two groups. Group 1 contained lymphoma cell lines in which Notch signalling was intact; of these 4 cell lines were SEL1L+/HES1- and 3 SEL1L-/HES1-. Notch signalling was not subverted by EBNA2 expression in these lymphoma cells. In Group 2 cell lines Notch signalling was constitutively active but 6 out of 7 cell lines expressed SEL1L at high levels. In summary, a majority of cell lines of both groups express SEL1L and no inverse relationship is evident between SEL1L expression and the status of Notch signalling. The present investigation therefore suggests that SEL1L may not exert a negative regulatory influence on Notch signalling. No genomic alterations affecting SEL1L were detected either in the lymphoma or T-ALL cell lines tested. Taken together the present findings do not support the postulated negative regulatory role for SEL1L in Notch signalling.


Asunto(s)
Proteínas de Homeodominio , Leucemia/fisiopatología , Linfoma/fisiopatología , Proteínas de la Membrana/fisiología , Proteínas/fisiología , Receptores de Superficie Celular , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Biosíntesis de Proteínas , Proteínas/genética , Receptor Notch1 , Transducción de Señal/fisiología , Factor de Transcripción HES-1 , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...