Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(25): e202302840, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073945

RESUMEN

Effective immobilization and delivery of genetic materials is at the forefront of biological and medical research directed toward tackling scientific challenges such as gene therapy and cancer treatment. Herein we present a biologically inspired hydrogen-bonded zinc adeninate framework (ZAF) consisting of zinc adeninate macrocycles that self-assemble into a 3D framework through adenine-adenine interactions. ZAF can efficiently immobilize DNAzyme with full protection against enzyme degradation and physiological conditions until it is successfully delivered into the nucleus. As compared to zeolitic imidazolate frameworks (ZIFs), ZAFs are twofold more biocompatible with a significant loading efficiency of 96 %. Overall, our design paves the way for expanding functional hydrogen-bonding-based systems as potential platforms for the loading and delivery of biologics.


Asunto(s)
ADN Catalítico , Zinc , Adenina , Hidrógeno
2.
Biosens Bioelectron ; 229: 115240, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963326

RESUMEN

Optimized and sensitive biomarker detection has recently been shown to have a critical impact on quality of diagnosis and medical care options. In this research study, polyoxometalate-γ-cyclodextrin metal-organic framework (POM-γCD MOF) was utilized as an electrocatalyst to fabricate highly selective sensors to detect in-situ released dopamine. The POM-γCD MOF produced multiple modes of signals for dopamine including electrochemical, colorimetric, and smartphone read-outs. Real-time quantitative monitoring of SH-SY5Y neuroblastoma cellular dopamine production was successfully demonstrated under various stimuli at different time intervals. The POM-CD MOF sensor and linear regression model were used to develop a smartphone read-out platform, which converts dopamine visual signals to digital signals within a few seconds. Ultimately, POM-γCD MOFs can play a significant role in the diagnosis and treatment of various diseases that involve dopamine as a significant biomarker.


Asunto(s)
Técnicas Biosensibles , Ciclodextrinas , Neuroblastoma , Humanos , Dopamina
3.
JACS Au ; 2(3): 623-630, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373199

RESUMEN

Biologically derived metal-organic frameworks (Bio-MOFs) are significant, as they can be used in cutting-edge biomedical applications such as targeted gene delivery. Herein, adenine (Ade) and unnatural amino acids coordinate with Zn2+ to produce biocompatible frameworks, KBM-1 and KBM-2, with extremely defined porous channels. They feature an accessible Watson-Crick Ade face that is available for further hydrogen bonding and can load single-stranded DNA (ssDNA) with 13 and 41% efficiency for KBM-1 and KBM-2, respectively. Treatment of these frameworks with thymine (Thy), as a competitive guest for base pairing with the Ade open sites, led to more than 50% reduction of ssDNA loading. Moreover, KBM-2 loaded Thy-rich ssDNA more efficiently than Thy-free ssDNA. These findings support the role of the Thy-Ade base pairing in promoting ssDNA loading. Furthermore, theoretical calculations using the self-consistent charge density functional tight-binding (SCC-DFTB) method verified the role of hydrogen bonding and van der Waals type interactions in this host-guest interface. KBM-1 and KBM-2 can protect ssDNA from enzymatic degradation and release it at acidic pH. Most importantly, these biocompatible frameworks can efficiently deliver genetic cargo with retained activity to the cell nucleus. We envisage that this class of Bio-MOFs can find immediate applicability as biomimics for sensing, stabilizing, and delivering genetic materials.

4.
Chem Sci ; 12(37): 12286-12291, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34603658

RESUMEN

Distillation-free separations of haloalkane isomers represents a persistent challenge for the chemical industry. Several classic molecular sorbents show high selectivity in the context of such separations; however, most suffer from limited tunability or poor stability. Herein, we report the results of a comparative study involving three trianglamine and trianglimine macrocycles as supramolecular adsorbents for the selective separation of halobutane isomers. Methylene-bridged trianglamine, TA, was found to capture preferentially 1-chlorobutane (1-CBU) from a mixture of 1-CBU and 2-chlorobutane (2-CBU) with a purity of 98.1%. It also separates 1-bromobutane (1-BBU) from a mixture of 1-BBU and 2-bromobutane (2-BBU) with a purity of 96.4%. The observed selectivity is ascribed to the thermodynamic stability of the TA-based host-guest complexes. Based on single crystal X-ray diffraction analyses, a [3]pseudorotaxane structure (2TA⊃1-CBU) is formed between TA and 1-CBU that is characterized by an increased level of noncovalent interactions compared to the corresponding [2]pseudorotaxane structure seen for TA⊃2-CBU. We believe that molecular sorbents that rely on specific molecular recognition events, such as the triangular pores detailed here, will prove useful as next generation sorbents in energy-efficient separations.

5.
Chem Sci ; 12(7): 2329-2344, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34163998

RESUMEN

Biologics, such as functional proteins and nucleic acids, have recently dominated the drug market and comprise seven out of the top 10 best-selling drugs. Biologics are usually polar, heat sensitive, membrane impermeable and subject to enzymatic degradation and thus require systemic routes of administration and delivery. Coordination-based delivery vehicles, which include nanosized extended metal-organic frameworks (nMOFs) and discrete coordination cages, have gained a lot of attention because of their remarkable biocompatibility, in vivo stability, on-demand biodegradability, high encapsulation efficiency, easy surface modification and moderate synthetic conditions. Consequently, these systems have been extensively utilized as carriers of biomacromolecules for biomedical applications. This review summarizes the recent applications of nMOFs and coordination cages for protein, CRISPR-Cas9, DNA and RNA delivery. We also highlight the progress and challenges of coordination-based platforms as a promising approach towards clinical biomacromolecule delivery and discuss integral future research directions and applications.

6.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523955

RESUMEN

The major impediments to the implementation of cancer immunotherapies are the sustained immune effect and the targeted delivery of these therapeutics, as they have life-threatening adverse effects. In this work, biomimetic metal-organic frameworks [zeolitic imidazolate frameworks (ZIFs)] are used for the controlled delivery of nivolumab (NV), a monoclonal antibody checkpoint inhibitor that was U.S. Food and Drug Administration-approved back in 2014. The sustained release behavior of NV-ZIF has shown a higher efficacy than the naked NV to activate T cells in hematological malignancies. The system was further modified by coating NV-ZIF with cancer cell membrane to enable tumor-specific targeted delivery while treating solid tumors. We envisage that such a biocompatible and biodegradable immunotherapeutic delivery system may promote the development and the translation of hybrid superstructures into smart and personalized delivery platforms.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Zeolitas , Biomimética , Humanos , Inmunoterapia , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Estados Unidos , Zeolitas/química
7.
Chem Commun (Camb) ; 55(5): 620-623, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30543212

RESUMEN

Here, the porosity of a metal organic framework (MIL-101) is tailored by the choice of the solvent occupying the pores in a template free acid etching process. Employing a slightly basic solvent such as DMF afforded big pores around 30 nm (BP-MIL-101). Catalase (CAT), which is a large protein (6 × 10 nm), was successfully encapsulated by a diffusion-based method with a high capacity of 12.5%. BP-MIL-101 could successfully protect CAT from both digestion and denaturation while maintaining its catalytic activity. This paves the way for encapsulating different large biological targets for eventual translation and delivery.


Asunto(s)
Catalasa/química , Complejos de Coordinación/química , Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Catálisis , Complejos de Coordinación/síntesis química , Difusión , Estabilidad de Enzimas , Peróxido de Hidrógeno/química , Cinética , Estructuras Metalorgánicas/síntesis química , Tamaño de la Partícula , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...