Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036390

RESUMEN

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

2.
Curr Biol ; 33(22): 4798-4806.e3, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37827150

RESUMEN

Organ function emerges from the interactions between their constituent cells. The investigation of cellular organization can provide insight into organ function following structure-function relationships. Here, we investigate the extent to which properties in cellular organization can arise "for free" as an emergent property of embedding cells in space versus those that are actively generated by patterning processes. Default cellular configurations were established using three-dimensional (3D) digital tissue models. Network-based analysis of these synthetic cellular assemblies established a quantitative topological baseline of cellular organization, granted by virtue of passive spatial packing and the minimal amount of order that emerges for free in tessellated tissues. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was generated, and the extent to which the organs in this organism conform to the default configurations was established through statistical comparisons with digital tissue models. Cells in different tissues of Arabidopsis do not conform to random packing arrangements to varying degrees. Most closely matching the random models was the undifferentiated shoot apical meristem (SAM) from which aerial organs emanate. By contrast, leaf and sepal tissue showed the greatest deviation from this baseline, suggesting these to be the most "complex" tissues in Arabidopsis. Investigation of the patterning principles responsible for the gap between these tissues and default patterns revealed cell elongation and the introduction of air spaces to contribute toward additional organ patterning complexity. This work establishes a quantitative morphospace to understand the principles of organ construction and its diversity within a single organism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Morfogénesis , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plants (Basel) ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37653894

RESUMEN

Plant cell wall biosynthesis is a complex process that requires proteins and enzymes from glycan synthesis to wall assembly. We show that disruption of At3g50120 (DUF247-1), a member of the DUF247 multigene family containing 28 genes in Arabidopsis, results in alterations to the structure and composition of cell wall polysaccharides and reduced growth and plant size. An ELISA using cell wall antibodies shows that the mutants also exhibit ~50% reductions in xyloglucan (XyG), glucuronoxylan (GX) and heteromannan (HM) epitopes in the NaOH fraction and ~50% increases in homogalacturonan (HG) epitopes in the CDTA fraction. Furthermore, the polymer sizes of XyGs and GXs are reduced with concomitant increases in short-chain polymers, while those of HGs and mHGs are slightly increased. Complementation using 35S:DUF247-1 partially recovers the XyG and HG content, but not those of GX and HM, suggesting that DUF247-1 is more closely associated with XyGs and HGs. DUF247-1 is expressed throughout Arabidopsis, particularly in vascular and developing tissues, and its disruption affects the expression of other gene members, indicating a regulatory control role within the gene family. Our results demonstrate that DUF247-1 is required for normal cell wall composition and structure and Arabidopsis growth.

4.
J R Soc Interface ; 20(204): 20230115, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37491909

RESUMEN

Network analysis is a well-known and powerful tool in molecular biology. More recently, it has been introduced in developmental biology. Tissues can be readily translated into spatial networks such that cells are represented by nodes and intercellular connections by edges. This discretization of cellular organization enables mathematical approaches rooted in network science to be applied towards the understanding of tissue structure and function. Here, we describe how such tissue abstractions can enable the principles that underpin tissue formation and function to be uncovered. We provide an introduction into biologically relevant network measures, then present an overview of different areas of developmental biology where these approaches have been applied. We then summarize the general developmental rules underpinning tissue topology generation. Finally, we discuss how generative models can help to link the developmental rule back to the tissue topologies. Our collection of results points at general mechanisms as to how local developmental rules can give rise to observed topological properties in multicellular systems.

5.
Plant Physiol ; 190(4): 2398-2416, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36029252

RESUMEN

The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.


Asunto(s)
Selaginellaceae , Selaginellaceae/genética , Meristema/metabolismo , Transcriptoma/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Plants (Basel) ; 11(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631735

RESUMEN

The rapid and uniform establishment of crop plants in the field underpins food security through uniform mechanical crop harvesting. In order to achieve this, seeds with greater vigor should be used. Vigor is a component of physiological quality related to seed resilience. Despite this importance, there is little knowledge of the association between events at the molecular level and seed vigor. In this study, we investigated the relationship between gene expression during germination and seed vigor in soybean. The expression level of twenty genes related to growth at the beginning of the germination process was correlated with vigor. In this paper, vigor was evaluated by different tests. Then we reported the identification of the genes Expansin-like A1, Xyloglucan endotransglucosylase/hydrolase 22, 65-kDa microtubule-associated protein, Xyloglucan endotransglucosylase/hydrolase 2, N-glycosylase/DNA lyase OGG1 and Cellulose synthase A catalytic subunit 2, which are expressed during germination, that correlated with several vigor tests commonly used in routine analysis of soybean seed quality. The identification of these transcripts provides tools to study vigor in soybean seeds at the molecular level.

7.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
8.
Methods Mol Biol ; 2457: 457-464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349160

RESUMEN

The cells which make up plant tissues remain fixed together through shared cell walls. Cell-to-cell communication principally takes place through these shared interfaces through a combination of plasmodesmata, transporters, and the apoplastic space. To better understand the capacity for intercellular communication in plant tissues, this chapter outlines a method which can be used to quantify the surface area of shared intercellular interfaces using whole mount imaging and quantitative 3D image analysis. This method allows the potential for intercellular communication as prescribed by cellular architecture to be measured at single cell resolution.


Asunto(s)
Plantas , Plasmodesmos , Comunicación Celular , Pared Celular/metabolismo , Plantas/metabolismo , Plasmodesmos/metabolismo
9.
Mol Plant ; 14(12): 1985-1999, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34358681

RESUMEN

The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity. Instead, brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion. Moreover, we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions, which are sufficient to restore growth vigor. Finally, single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Diferenciación Celular/efectos de los fármacos , Raíces de Plantas/citología , Arabidopsis/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transcriptoma/efectos de los fármacos
10.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
11.
Cell Syst ; 12(5): 419-431.e4, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34015261

RESUMEN

Mitochondria in plant cells exist largely as individual organelles which move, colocalize, and interact, but the cellular priorities addressed by these dynamics remain incompletely understood. Here, we elucidate these principles by studying the dynamic "social networks" of mitochondria in Arabidopsis thaliana wildtype and mutants, describing the colocalization of individuals over time. We combine single-cell live imaging of hypocotyl mitochondrial dynamics with individual-based modeling and network analysis. We identify an inevitable tradeoff between mitochondrial physical priorities (an even cellular distribution of mitochondria) and "social" priorities (individuals interacting, to facilitate the exchange of chemicals and information). This tradeoff results in a tension between maintaining mitochondrial spacing and facilitating colocalization. We find that plant cells resolve this tension to favor efficient networks with high potential for exchanging contents. We suggest that this combination of physical modeling coupled to experimental data through network analysis can shed light on the fundamental principles underlying these complex organelle dynamics. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Arabidopsis , Humanos , Dinámicas Mitocondriales , Revisión por Pares
12.
Quant Plant Biol ; 2: e10, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077212

RESUMEN

Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.

13.
Annu Rev Genet ; 54: 417-437, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886544

RESUMEN

A transition from qualitative to quantitative descriptors of morphology has been facilitated through the growing field of morphometrics, representing the conversion of shapes and patterns into numbers. The analysis of plant form at the macromorphological scale using morphometric approaches quantifies what is commonly referred to as a phenotype. Quantitative phenotypic analysis of individuals with contrasting genotypes in turn provides a means to establish links between genes and shapes. The path from a gene to a morphological phenotype is, however, not direct, with instructive information progressing both across multiple scales of biological complexity and through nonintuitive feedback, such as mechanical signals. In this review, we explore morphometric approaches used to perform whole-plant phenotyping and quantitative approaches in capture processes in the mesoscales, which bridge the gaps between genes and shapes in plants. Quantitative frameworks involving both the computational simulation and the discretization of data into networks provide a putative path to predicting emergent shape from underlying genetic programs.


Asunto(s)
Genes de Plantas/genética , Ligamiento Genético/genética , Plantas/genética , Animales , Simulación por Computador , Genotipo , Humanos , Fenotipo
14.
Curr Biol ; 30(19): 3703-3712.e4, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32763174

RESUMEN

Seed dormancy is an adaptive trait defining where and when plants are established. Diverse signals from the environment are used to decide when to initiate seed germination, a process driven by the expansion of cells within the embryo. How these signals are integrated and transduced into the biomechanical changes that drive embryo growth remains poorly understood. Using Arabidopsis seeds, we demonstrate that cell-wall-loosening EXPANSIN (EXPA) genes promote gibberellic acid (GA)-mediated germination, identifying EXPAs as downstream molecular targets of this developmental phase transition. Molecular interaction screening identified transcription factors (TFs) that bind to both EXPA promoter fragments and DELLA GA-response regulators. A subset of these TFs is targeted each by nitric oxide (NO) and the phytochrome-interacting TF PIL5. This molecular interaction network therefore directly links the perception of an external environmental signal (light) and internal hormonal signals (GA and NO) with downstream germination-driving EXPA gene expression. Experimental validation of this network established that many of these TFs mediate GA-regulated germination, including TCP14/15, RAP2.2/2.3/2.12, and ZML1. The reduced germination phenotype of the tcp14 tcp15 mutant seed was partially rescued through ectopic expression of their direct target EXPA9. The GA-mediated control of germination by TCP14/15 is regulated through EXPA-mediated control of cell wall loosening, providing a mechanistic explanation for this phenotype and a previously undescribed role for TCPs in the control of cell expansion. This network reveals the paths of signal integration that culminate in seed germination and provides a resource to uncover links between the genetic and biomechanical bases of plant growth.


Asunto(s)
Arabidopsis/metabolismo , Germinación/fisiología , Semillas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Giberelinas/metabolismo , Fitocromo/metabolismo , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/genética , Factores de Transcripción/metabolismo
15.
Nature ; 583(7815): 271-276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32612234

RESUMEN

Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein-protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein-protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Mapas de Interacción de Proteínas , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Reproducibilidad de los Resultados , Transcripción Genética
17.
Elife ; 92020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32723478

RESUMEN

Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural network to predict cell boundaries and graph partitioning to segment cells based on the neural network predictions. PlantSeg was trained on fixed and live plant organs imaged with confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes well across different tissues, scales, acquisition settings even on non plant samples. We present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free and open-source, with both a command line and a user-friendly graphical interface.


Asunto(s)
Arabidopsis/anatomía & histología , Imagenología Tridimensional/métodos , Células Vegetales , Programas Informáticos , Arabidopsis/citología , Redes Neurales de la Computación
18.
J R Soc Interface ; 17(165): 20200137, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32316879

RESUMEN

Cells are the fundamental building blocks of organs and tissues. Information and mass flow through cellular contacts in these structures is vital for the orchestration of organ function. Constraints imposed by packing and cell immobility limit intercellular communication, particularly as organs and organisms scale up to greater sizes. In order to transcend transport limitations, delivery systems including vascular and respiratory systems evolved to facilitate the movement of matter and information. The construction of these delivery systems has an associated cost, as vascular elements do not perform the metabolic functions of the organs they are part of. This study investigates a fundamental trade-off in vascularization in multicellular tissues: the reduction of path lengths for communication versus the cost associated with producing vasculature. Biologically realistic generative models, using multicellular templates of different dimensionalities, revealed a limited advantage to the vascularization of two-dimensional tissues. Strikingly, scale-free improvements in transport efficiency can be achieved even in the absence of global knowledge of tissue organization. A point of diminishing returns in the investment of additional vascular tissue to the increased reduction of path length in 2.5- and three-dimensional tissues was identified. Applying this theory to experimentally determined biological tissue structures, we show the possibility of a co-dependency between the method used to limit path length and the organization of cells it acts upon. These results provide insight as to why tissues are or are not vascularized in nature, the robustness of developmental generative mechanisms and the extent to which vasculature is advantageous in the support of organ function.


Asunto(s)
Comunicación Celular
19.
Nat Commun ; 10(1): 4020, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488841

RESUMEN

Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.


Asunto(s)
Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Hipoxia , Óxido Nítrico/metabolismo , Estrés Fisiológico/fisiología , Aclimatación/genética , Aclimatación/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inundaciones , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Proteolisis , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1774): 20180370, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31006360

RESUMEN

Information processing and storage underpins many biological processes of vital importance to organism survival. Like animals, plants also acquire, store and process environmental information relevant to their fitness, and this is particularly evident in their decision-making. The control of plant organ growth and timing of their developmental transitions are carefully orchestrated by the collective action of many connected computing agents, the cells, in what could be addressed as distributed computation. Here, we discuss some examples of biological information processing in plants, with special interest in the connection to formal computational models drawn from theoretical frameworks. Research into biological processes with a computational perspective may yield new insights and provide a general framework for information processing across different substrates. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Cognición , Simulación por Computador , Toma de Decisiones , Procesamiento Automatizado de Datos , Solución de Problemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...