Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(22): 15844-15849, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38779829

RESUMEN

We report the magnetic structure and properties of a thiocyanate-based honeycomb magnet [Na(OH2)3]Mn(NCS)3 which crystallises in the unusual low-symmetry trigonal space group P3̄. Magnetic measurements on powder samples show this material is an antiferromagnet (ordering temperature TN,mag = 18.1(6) K) and can be described by nearest neighbour antiferromagnetic interactions J = -11.07(4) K. A method for growing neutron-diffraction sized single crystals (>10 mm3) is demonstrated. Low temperature neutron single crystal diffraction shows that the compound adopts the collinear antiferromagnetic structure with TN,neut = 18.94(7) K, magnetic space group P3̄'. Low temperature second-harmonic generation (SHG) measurements provide no evidence of breaking of the centre of symmetry.

2.
Chem Mater ; 36(9): 4226-4239, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764754

RESUMEN

The long- and local-range structure and electronic properties of the high-voltage lithium-ion cathode material for Li-ion batteries, LiNiO2, remain widely debated, as are the degradation phenomena at high states of delithiation, limiting the more widespread use of this material. In particular, the local structural environment and the role of Jahn-Teller distortions are unclear, as are the interplay of distortions and point defects and their influence on cycling behavior. Here, we use ex situ7Li NMR measurements in combination with density functional theory (DFT) calculations to examine Jahn-Teller distortions and antisite defects in LiNiO2. We calculate the 7Li Fermi contact shifts for the Jahn-Teller distorted and undistorted structures, the experimental 7Li room-temperature spectrum being ascribed to an appropriately weighted time average of the rapidly fluctuating structure comprising collinear, zigzag, and undistorted domains. The 7Li NMR spectra are sensitive to the nature and distribution of antisite defects, and in combination with DFT calculations of different configurations, we show that the 7Li resonance at approximately -87 ppm is characteristic of a subset of Li-Ni antisite defects, and more specifically, a Li+ ion in the Ni layer that does not have an associated Ni ion in the Li layer in its 2nd cation coordination shell. Via ex situ7Li MAS NMR, X-ray diffraction, and electrochemical experiments, we identify the 7Li spectral signatures of the different crystallographic phases on delithiation. The results imply fast Li-ion dynamics in the monoclinic phase and indicate that the hexagonal H3 phase near the end of charge is largely devoid of Li.

3.
Chem Mater ; 35(14): 5497-5511, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521744

RESUMEN

Graphite is the most commercially successful anode material for lithium (Li)-ion batteries: its low cost, low toxicity, and high abundance make it ideally suited for use in batteries for electronic devices, electrified transportation, and grid-based storage. The physical and electrochemical properties of graphite anodes have been thoroughly characterized. However, questions remain regarding their electronic structures and whether the electrons occupy localized states on Li, delocalized states on C, or an admixture of both. In this regard, electron paramagnetic resonance (EPR) spectroscopy is an invaluable tool for characterizing the electronic states generated during electrochemical cycling as it measures the properties of the unpaired electrons in lithiated graphites. In this work, ex situ variable-temperature (10-300 K), variable-frequency (9-441 GHz) EPR was carried out to extract the g tensors and line widths and understand the effect of metallicity on the observed EPR spectra of electrochemically lithiated graphites at four different states of lithiation. We show that the increased resolution offered by EPR at high frequencies (>300 GHz) enables up to three different electron environments of axial symmetry to be observed, revealing heterogeneity within the graphite particles and the presence of hyperfine coupling to Li nuclei. Importantly, our work demonstrates the power of EPR spectroscopy to investigate the local electronic structure of graphite at different lithiation stages, paving the way for this technique as a tool for screening and investigating novel materials for use in Li-ion batteries.

4.
Chem Mater ; 35(24): 10564-10583, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162043

RESUMEN

In this work, we present a variable-temperature 23Na NMR and variable-temperature and variable-frequency electron paramagnetic resonance (EPR) analysis of the local structure of a layered P2 Na-ion battery cathode material, Na0.67[Mg0.28Mn0.72]O2 (NMMO). For the first time, we elucidate the superstructure in this material by using synchrotron X-ray diffraction and total neutron scattering and show that this superstructure is consistent with NMR and EPR spectra. To complement our experimental data, we carry out ab initio calculations of the quadrupolar and hyperfine 23Na NMR shifts, the Na+ ion hopping energy barriers, and the EPR g-tensors. We also describe an in-house simulation script for modeling the effects of ionic mobility on variable-temperature NMR spectra and use our simulations to interpret the experimental spectra, available upon request. We find long-zigzag-type Na ordering with two different types of Na sites, one with high mobility and the other with low mobility, and reconcile the tendency toward Na+/vacancy ordering to the preservation of local electroneutrality. The combined magnetic resonance methodology for studying local paramagnetic environments from the perspective of electron and nuclear spins will be useful for examining the local structures of materials for devices.

5.
J Am Chem Soc ; 144(41): 18714-18729, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36201656

RESUMEN

Modern studies of lithium-ion battery (LIB) cathode materials employ a large range of experimental and theoretical techniques to understand the changes in bulk and local chemical and electronic structures during electrochemical cycling (charge and discharge). Despite its being rich in useful chemical information, few studies to date have used 17O NMR spectroscopy. Many LIB cathode materials contain paramagnetic ions, and their NMR spectra are dominated by hyperfine and quadrupolar interactions, giving rise to broad resonances with extensive spinning sideband manifolds. In principle, careful analysis of these spectra can reveal information about local structural distortions, magnetic exchange interactions, structural inhomogeneities (Li+ concentration gradients), and even the presence of redox-active O anions. In this Perspective, we examine the primary interactions governing 17O NMR spectroscopy of LIB cathodes and outline how 17O NMR may be used to elucidate the structure of pristine cathodes and their structural evolution on cycling, providing insight into the challenges in obtaining and interpreting the spectra. We also discuss the use of 17O NMR in the context of anionic redox and the role this technique may play in understanding the charge compensation mechanisms in high-capacity cathodes, and we provide suggestions for employing 17O NMR in future avenues of research.

6.
Chem Mater ; 33(13): 4890-4906, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34276134

RESUMEN

P2-layered sodium-ion battery (NIB) cathodes are a promising class of Na-ion electrode materials with high Na+ mobility and relatively high capacities. In this work, we report the structural changes that take place in P2-Na0.67[Mg0.28Mn0.72]O2. Using ex situ X-ray diffraction, Mn K-edge extended X-ray absorption fine structure, and 23Na NMR spectroscopy, we identify the bulk phase changes along the first electrochemical charge-discharge cycle-including the formation of a high-voltage "Z phase", an intergrowth of the OP4 and O2 phases. Our ab initio transition state searches reveal that reversible Mg2+ migration in the Z phase is both kinetically and thermodynamically favorable at high voltages. We propose that Mg2+ migration is a significant contributor to the observed voltage hysteresis in Na0.67[Mg0.28Mn0.72]O2 and identify qualitative changes in the Na+ ion mobility.

7.
Inorg Chem ; 59(16): 11627-11639, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799496

RESUMEN

Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically simple layered molecular frameworks. Here, we report two new members of the family, manganese(II) thiocyanate, Mn(NCS)2, and iron(II) thiocyanate, Fe(NCS)2. Using magnetic susceptibility measurements on these materials and on cobalt(II) thiocyanate and nickel(II) thiocyanate, Co(NCS)2 and Ni(NCS)2, respectively, we identify significantly stronger net antiferromagnetic interactions between the earlier TM ions-a decrease in the Weiss constant, θ, from 29 K for Ni(NCS)2 to -115 K for Mn(NCS)2-a consequence of more diffuse 3d orbitals, increased orbital overlap, and increasing numbers of unpaired t2g electrons. We elucidate the magnetic structures of these materials: Mn(NCS)2, Fe(NCS)2, and Co(NCS)2 order into the same antiferromagnetic commensurate ground state, while Ni(NCS)2 adopts a ground state structure consisting of ferromagnetically ordered layers stacked antiferromagnetically. We show that significantly stronger exchange interactions can be realized in these thiocyanate frameworks by using earlier TMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...