Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861672

RESUMEN

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Asunto(s)
Transferencia de Energía , Complejos de Proteína Captadores de Luz , Mutación , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II
2.
J Phys Chem Lett ; 15(11): 3149-3158, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38478725

RESUMEN

We combine site-directed mutagenesis with picosecond time-resolved fluorescence and femtosecond transient absorption (TA) spectroscopies to identify excitation energy transfer (EET) processes between chlorophylls (Chls) and xanthophylls (Xant) in the minor antenna complex CP29 assembled inside nanodiscs, which result in quenching. When compared to WT CP29, a longer lifetime was observed in the A2 mutant, missing Chl a612, which closely interacts with Xant Lutein in site L1. Conversely, a shorter lifetime was obtained in the A5 mutant, in which the interaction between Chl a603 and Chl a609 is strengthened, shifting absorption to lower energy and enhancing Chl-Xant EET. Global analysis of TA data indicated that EET from Chl a Qy to a Car dark state S* is active in both the A2 and A5 mutants and that their rate constants are modulated by mutations. Our study provides experimental evidence that multiple Chl-Xant interactions are involved in the quenching activity of CP29.


Asunto(s)
Clorofila , Luteína , Clorofila/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de Energía , Xantófilas , Sitios de Unión , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA