Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(19): 3910-3915, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568185

RESUMEN

We study the photophysics of molecular aggregates from a quantum optics perspective, with emphasis on deriving scaling laws for the fast nonradiative relaxation of collective electronic excitations, referred to as Kasha's rule. Aggregates exhibit an energetically broad manifold of collective states with delocalized electronic excitations originating from near-field dipole-dipole exchanges between neighboring monomers. Photoexcitation at optical wavelengths, much larger than the monomer-monomer average separation, addresses almost exclusively symmetric collective states, which for an arrangement known as H-aggregate show an upward hypsochromic shift. The extremely fast subsequent nonradiative relaxation via intramolecular vibrational modes populates lower energy, subradiant states, resulting in effective inhibition of fluorescence. Our analytical treatment allows for the derivation of an approximate scaling law of this relaxation process, linear in the number of available low-energy vibrational modes and directly proportional to the dipole-dipole interaction strength between neighboring monomers.

2.
Phys Rev Lett ; 132(4): 043602, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335329

RESUMEN

Quantum metasurfaces, i.e., two-dimensional subwavelength arrays of quantum emitters, can be employed as mirrors towards the design of hybrid cavities, where the optical response is given by the interplay of a cavity-confined field and the surface modes supported by the arrays. We show that stacked layers of quantum metasurfaces with orthogonal dipole orientation can serve as helicity-preserving cavities. These structures exhibit ultranarrow resonances and can enhance the intensity of the incoming field by orders of magnitude, while simultaneously preserving the handedness of the field circulating inside the resonator, as opposed to conventional cavities. The rapid phase shift in the cavity transmission around the resonance can be exploited for the sensitive detection of chiral scatterers passing through the cavity. We discuss possible applications of these resonators as sensors for the discrimination of chiral molecules. Our approach describes a new way of chiral sensing via the measurement of particle-induced phase shifts.

3.
Opt Express ; 31(4): 6003-6026, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823868

RESUMEN

We describe applications of two-dimensional subwavelength quantum emitter arrays as efficient optical elements in the linear regime. For normally incident light, the cooperative optical response, stemming from emitter-emitter dipole exchanges, allows the control of the array's transmission, its resonance frequency, and bandwidth. Operations on fully polarized incident light, such as generic linear and circular polarizers as well as phase retarders can be engineered and described in terms of Jones matrices. Our analytical approach and accompanying numerical simulations identify optimal regimes for such operations and reveal the importance of adjusting the array geometry and of the careful tuning of the external magnetic fields amplitude and direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA