Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 282(43): 31366-72, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17704060

RESUMEN

Matching blood flow to myocardial energy demand is vital for heart performance and recovery following ischemia. The molecular mechanisms responsible for transduction of myocardial energetic signals into reactive vasodilatation are, however, elusive. Adenylate kinase, associated with AMP signaling, is a sensitive reporter of the cellular energy state, yet the contribution of this phosphotransfer system in coupling myocardial metabolism with coronary flow has not been explored. Here, knock out of the major adenylate kinase isoform, AK1, disrupted the synchrony between inorganic phosphate P(i) turnover at ATP-consuming sites and gamma-ATP exchange at ATP synthesis sites, as revealed by (18)O-assisted (31)P NMR. This reduced energetic signal communication in the post-ischemic heart. AK1 gene deletion blunted vascular adenylate kinase phosphotransfer, compromised the contractility-coronary flow relationship, and precipitated inadequate coronary reflow following ischemia-reperfusion. Deficit in adenylate kinase activity abrogated AMP signal generation and reduced the vascular adenylate kinase/creatine kinase activity ratio essential for the response of metabolic sensors. The sarcolemma-associated splice variant AK1beta facilitated adenosine production, a function lost in the absence of adenylate kinase activity. Adenosine treatment bypassed AK1 deficiency and restored post-ischemic flow to wild-type levels, achieving phenotype rescue. AK1 phosphotransfer thus transduces stress signals into adequate vascular response, providing linkage between cell bioenergetics and coronary flow.


Asunto(s)
Adenilato Quinasa/fisiología , Isoenzimas/genética , Isquemia Miocárdica/enzimología , Miocardio/enzimología , Transducción de Señal , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Animales , Creatina Quinasa/metabolismo , Metabolismo Energético , Eliminación de Gen , Corazón/fisiopatología , Isoenzimas/deficiencia , Isoenzimas/metabolismo , Isoenzimas/fisiología , Ratones , Ratones Noqueados , Modelos Biológicos , Contracción Miocárdica , Isquemia Miocárdica/fisiopatología , Reperfusión Miocárdica , Miocardio/citología , Miocitos Cardíacos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Isótopos de Oxígeno/metabolismo , Fosfoproteínas/metabolismo , Isótopos de Fósforo/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 292(4): H1706-13, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17189350

RESUMEN

Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of K(ATP) channels in the intact organism has been the inability to monitor in vivo the contribution of the channel to intracellular calcium handling and the superimposed effect of sex that ultimately defines heart function. Here, in vivo manganese-enhanced cardiac magnetic resonance imaging revealed, under dobutamine stress, a significantly greater accumulation of calcium in both male and female K(ATP) channel knockout (Kir6.2-KO) mice compared with sex- and age-matched wild-type (WT) counterparts, with greatest calcium load in Kir6.2-KO females. This translated, poststress, into a sustained contracture manifested by reduced end-diastolic volumes in K(ATP) channel-deficient mice. In response to ischemia-induced stunning, male and female Kir6.2-KO hearts demonstrated accelerated time to contracture and increased peak contracture compared with WT. The outcome on reperfusion, in both male and female Kir6.2-KO hearts, was a transient reduction in systolic performance, measured as rate-pressure product compared with WT, with protracted increase in left ventricular end-diastolic pressure, exaggerated in female knockout hearts, despite comparable leakage of creatine kinase across groups. Kir6.2-KO hearts were rescued from diastolic dysfunction by agents that target alternative pathways of calcium handling. Thus K(ATP) channel deficit confers a greater susceptibility to calcium overload in vivo, accentuated in female hearts, impairing contractile recovery under various conditions of high metabolic demand.


Asunto(s)
Calcio/metabolismo , Contracción Miocárdica/fisiología , Aturdimiento Miocárdico/metabolismo , Aturdimiento Miocárdico/fisiopatología , Canales de Potasio de Rectificación Interna/genética , Animales , Cardiotónicos/farmacología , Dobutamina/farmacología , Metabolismo Energético/fisiología , Femenino , Homeostasis/fisiología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Aturdimiento Miocárdico/patología , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Recuperación de la Función/fisiología , Caracteres Sexuales , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología
3.
Mol Cell Biochem ; 256-257(1-2): 281-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14977188

RESUMEN

Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress.


Asunto(s)
Metabolismo Energético , Hipoxia/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Animales , Cobayas , Masculino , Miocardio/metabolismo , Isótopos de Oxígeno , Isótopos de Fósforo , Protones
4.
Am J Physiol Heart Circ Physiol ; 284(4): H1048-56, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12666660

RESUMEN

Modulation of mitochondrial respiratory chain, dehydrogenase, and nucleotide-metabolizing enzyme activities is fundamental to cellular protection. Here, we demonstrate that the potassium channel opener diazoxide, within its cardioprotective concentration range, modulated the activity of flavin adenine dinucleotide-dependent succinate dehydrogenase with an IC50 of 32 microM and reduced the rate of succinate-supported generation of reactive oxygen species (ROS) in heart mitochondria. 5-Hydroxydecanoic fatty acid circumvented diazoxide-inhibited succinate dehydrogenase-driven electron flow, indicating a metabolism-dependent supply of redox equivalents to the respiratory chain. In perfused rat hearts, diazoxide diminished the generation of malondialdehyde, a marker of oxidative stress, which, however, increased on diazoxide washout. This effect of diazoxide mimicked ischemic preconditioning and was associated with reduced oxidative damage on ischemia-reperfusion. Diazoxide reduced cellular and mitochondrial ATPase activities, along with nucleotide degradation, contributing to preservation of myocardial ATP levels during ischemia. Thus, by targeting nucleotide-requiring enzymes, particularly mitochondrial succinate dehydrogenase and cellular ATPases, diazoxide reduces ROS generation and nucleotide degradation, resulting in preservation of myocardial energetics under stress.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Diazóxido/farmacología , Mitocondrias Cardíacas/enzimología , Nucleótidos/farmacología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Amidas/metabolismo , Animales , Ácidos Decanoicos/farmacología , Transporte de Electrón/efectos de los fármacos , Flavina-Adenina Dinucleótido/farmacología , Hidroxiácidos/farmacología , Precondicionamiento Isquémico , Cinética , Malondialdehído/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Succinatos , Superóxidos/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 284(6): H2106-13, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12598229

RESUMEN

Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.2-KO) mice that lack metabolism-sensing sarcolemmal ATP-sensitive K(+) (K(ATP)) channels. In WT vs. Kir6.2-KO hearts, preconditioning induced a significantly higher total ATP turnover (232 +/- 20 vs. 155 +/- 15 nmol x mg protein(-1) x min(-1)), ATP synthesis rate (58 +/- 3 vs. 46 +/- 3% (18)O labeling of gamma-ATP), and ATP consumption rate (51 +/- 4 vs. 31 +/- 4% (18)O labeling of P(i)) after ischemia-reperfusion. Moreover, preconditioning preserved cardiac creatine kinase-catalyzed phosphotransfer in WT (234 +/- 26 nmol x mg protein(-1) x min(-1)) but not Kir6.2-KO (133 +/- 18 nmol x mg protein(-1) x min(-1)) hearts. In contrast with WT hearts, preconditioning failed to preserve contractile recovery in Kir6.2-KO hearts, as tight coupling between postischemic performance and high-energy phosphoryl transfer was compromised in the K(ATP)-channel-deficient myocardium. Thus intact K(ATP) channels are integral in ischemic preconditioning-induced protection of cellular energetic dynamics and associated cardiac performance.


Asunto(s)
Metabolismo Energético/genética , Metabolismo Energético/fisiología , Corazón/fisiología , Precondicionamiento Isquémico Miocárdico , Miocardio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Adenosina Trifosfato/metabolismo , Animales , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Ratones , Ratones Noqueados , Isquemia Miocárdica/fisiopatología , Fosfocreatina/metabolismo , Sarcolema/metabolismo
6.
Proc Natl Acad Sci U S A ; 99(20): 13278-83, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12271142

RESUMEN

Reaction to stress requires feedback adaptation of cellular functions to secure a response without distress, but the molecular order of this process is only partially understood. Here, we report a previously unrecognized regulatory element in the general adaptation syndrome. Kir6.2, the ion-conducting subunit of the metabolically responsive ATP-sensitive potassium (K(ATP)) channel, was mandatory for optimal adaptation capacity under stress. Genetic deletion of Kir6.2 disrupted K(ATP) channel-dependent adjustment of membrane excitability and calcium handling, compromising the enhancement of cardiac performance driven by sympathetic stimulation, a key mediator of the adaptation response. In the absence of Kir6.2, vigorous sympathetic challenge caused arrhythmia and sudden death, preventable by calcium-channel blockade. Thus, this vital function identifies a physiological role for K(ATP) channels in the heart.


Asunto(s)
Adaptación Biológica , Neuronas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Animales , Arritmias Cardíacas/patología , Calcio/metabolismo , Muerte Súbita , Electrofisiología , Hemodinámica , Homeostasis , Iones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Perfusión , Condicionamiento Físico Animal , Esfuerzo Físico , Estrés Fisiológico , Factores de Tiempo
7.
Am J Physiol Heart Circ Physiol ; 283(2): H776-82, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12124227

RESUMEN

Deletion of the major adenylate kinase AK1 isoform, which catalyzes adenine nucleotide exchange, disrupts cellular energetic economy and compromises metabolic signal transduction. However, the consequences of deleting the AK1 gene on cardiac energetic dynamics and performance in the setting of ischemia-reperfusion have not been determined. Here, at the onset of ischemia, AK1 knockout mice hearts displayed accelerated loss of contractile force compared with wild-type controls, indicating reduced tolerance to ischemic stress. On reperfusion, AK1 knockout hearts demonstrated reduced nucleotide salvage, resulting in lower ATP, GTP, ADP, and GDP levels and an altered metabolic steady state associated with diminished ATP-to-P(i) and creatine phosphate-to-P(i) ratios. Postischemic AK1 knockout hearts maintained approximately 40% of beta-phosphoryl turnover, suggesting increased phosphotransfer flux through remaining adenylate kinase isoforms. This was associated with sustained creatine kinase flux and elevated cellular glucose-6-phosphate levels as the cellular energetic system adapted to deletion of AK1. Such metabolic rearrangements, along with sustained ATP-to-ADP ratio and total ATP turnover rate, maintained postischemic contractile recovery of AK1 knockout hearts at wild-type levels. Thus deletion of the AK1 gene reveals that adenylate kinase phosphotransfer supports myocardial function on initiation of ischemic stress and safeguards intracellular nucleotide pools in postischemic recovery.


Asunto(s)
Adenilato Quinasa/fisiología , Isquemia Miocárdica/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Animales , Metabolismo Energético , Corazón/fisiopatología , Ratones , Ratones Noqueados/genética , Contracción Miocárdica , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Fosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...