Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nano Lett ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054892

RESUMEN

Lipids and nucleic acids are two of the most abundant components of our cells, and both molecules are widely used as engineering materials for nanoparticles. Here, we present a systematic study of how hydrophobic modifications can be employed to modulate the DNA/lipid interface. Using a series of DNA anchors with increasing hydrophobicity, we quantified the capacity to immobilize double-stranded (ds) DNA to lipid membranes in the liquid phase. Contrary to electrostatic effects, hydrophobic anchors are shown to be phase-independent if sufficiently hydrophobic. For weak anchors, the overall hydrophobicity can be enhanced following the concept of multivalency. Finally, we demonstrate that structural flexibility and anchor orientation overrule the effect of multivalency, emphasizing the need for careful scaffold design if strong interfaces are desired. Together, our findings guide the design of tailored DNA/membrane interfaces, laying the groundwork for advancements in biomaterials, drug delivery vehicles, and synthetic membrane mimics for biomedical research and nanomedicine.

3.
Immunity ; 57(6): 1324-1344.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38776918

RESUMEN

Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Tolerancia Inmunológica , Biosíntesis de Proteínas , Receptores de Antígenos de Linfocitos T , Linfocitos T CD8-positivos/inmunología , Animales , Diferenciación Celular/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Tolerancia Inmunológica/inmunología , Biosíntesis de Proteínas/inmunología , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Autoantígenos/inmunología
4.
ACS Nano ; 18(2): 1381-1395, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38126310

RESUMEN

Dendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses. Blocking this inhibitory pathway has been beneficial for the treatment of various cancer types, although only a subset of patients responds. A deepened understanding of the spatial organization and molecular interplay between PD-1 and its ligands may inform the design of more efficacious nanotherapeutics. We visualized the natural molecular PD-L1 organization on DCs by DNA-PAINT microscopy and created a template to engineer DNA-based nanoclusters presenting PD-1 at defined valencies, distances, and patterns. These multivalent nanomaterials were examined for their cellular binding and blocking ability. Our data show that PD-1 nano-organization has profound effects on ligand interaction and that the valency of PD-1 molecules modulates the effectiveness in restoring T cell function. This work highlights the power of spatially controlled functional materials to unravel the importance of multivalent patterns in the PD-1 pathway and presents alternative design strategies for immune-engineering.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Linfocitos T , Neoplasias/metabolismo , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA