Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(5): 1486-1496, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419868

RESUMEN

Luminescent nanoparticles have shown great potential for thermal sensing in bio-applications. Nonetheless, these materials lack water dispersibility that can be overcome by modifying their surface properties with water dispersible molecules such as cysteine. Herein, we employ LiYF4:Er3+/Yb3+ upconverting nanoparticles (UCNPs) capped with oleate or modified with cysteine dispersed in cyclohexane or in water, respectively, as thermal probes. Upconversion emission was used to sense temperature with a relative thermal sensitivity of ∼1.24% K-1 (at 300 K) and a temperature uncertainty of 0.8 K for the oleate capped and of 0.5 K for cysteine modified NPs. To study the effect of the cysteine modification in the heat transfer processes, the thermal conductivity of the nanofluids was determined, yielding 0.123(6) W m-1 K-1 for the oleate capped UCNPs dispersed in cyclohexane and 0.50(7) W m-1 K-1 for the cysteine modified UCNPs dispersed in water. Moreover, through the heating curves, the nanofluids' thermal resistances were estimated, showing that the cysteine modification partially prevents heat transfer.

3.
Adv Sci (Weinh) ; 9(17): e2104801, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347889

RESUMEN

The Internet of Things (IoT) fosters the development of smart city systems for sustainable living and increases comfort for people. One of the current challenges for sustainable buildings is the optimization of energy management. Temperature monitoring in buildings is of prime importance, as heating account for a great part of the total energy consumption. Here, a solar optical temperature sensor is presented with a thermal sensitivity of up to 1.23% °C-1 based on sustainable aqueous solutions of enhanced green fluorescent protein and C-phycocyanin from biological feedstocks. These photonic sensors are presented under the configuration of luminescent solar concentrators widely proposed as a solution to integrate energy-generating devices in buildings, as windows or façades. The developed mobile sensor is inserted in IoT context through the development of a self-powered system able to measure, record, and send data to a user-friendly website.


Asunto(s)
Energía Solar , Ciudades , Calefacción , Humanos , Temperatura , Sensación Térmica
4.
Nanoscale ; 12(47): 24169-24176, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283824

RESUMEN

Heat transfer and thermal properties at the nanoscale can be challenging to obtain experimentally. These are potentially relevant for understanding thermoregulation in cells. Experimental data from the transient heating regime in conjunction with a model based on the energy conservation enable the determination of the specific heat capacities for all components of a nanoconstruct, namely an upconverting nanoparticle and its conformal lipid bilayer coating. This approach benefits from a very simple, cost-effective and non-invasive optical setup to measure the thermal parameters at the nanoscale. The time-dependent model developed herein lays the foundation to describe the dynamics of heat transfer at the nanoscale and were used to understand the heat dissipation by lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , Calefacción , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA