Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 128: 89-98, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29772492

RESUMEN

High copper (Cu) soil contents, due to the continuous vineyard application of Cu fungicides throughout the years, may impair the growth of the shoot and modify the structure of the root system. The current study aimed to investigate the threshold levels of available Cu in the soil causing toxicity effects in young grapevine plants of 'Red Niagara' cultivated in clay soils. Grapevine plantlets were cultivated in pots containing vineyard devoted soils with increasing contents of available Cu (25, 80, 100 and 165 mg kg-1), for 53 days. Photosynthesis and transpiration rates, and the quantum yield of photosystem II (Fv/Fm) were evaluated during the cultivation period. At the end of the experiment, the plant nutrient and leaf chlorophyll were determined, along with the anatomical analysis of the root system structure and plant dry matter determination. Higher levels of available Cu in the soil increased the apoplastic, symplastic and total fraction of the metal in the roots, reducing the other nutrients, especially in the shoots. Photosynthesis, transpiration rates and Fv/Fm were also reduced. Higher levels of Cu led to anatomical changes in the roots, that increased diameter, number of layers in the cortex, vascular cylinder and total root areas. It also resulted in reduced dry matter production by grapevines.


Asunto(s)
Cobre/metabolismo , Granjas , Complejo de Proteína del Fotosistema II/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Vitis/metabolismo , Cobre/química , Transpiración de Plantas/fisiología
2.
Chemosphere ; 162: 293-307, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27513550

RESUMEN

Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms.


Asunto(s)
Agricultura , Cobre/toxicidad , Fungicidas Industriales/toxicidad , Rizosfera , Contaminantes del Suelo/toxicidad , Suelo/química , Biodegradación Ambiental , Granjas , Raíces de Plantas/química , Contaminantes del Suelo/análisis
3.
Plant Physiol Biochem ; 96: 270-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26318144

RESUMEN

Frequent applications of copper (Cu)-based fungicides on vines causes the accumulation of this metal in vineyard soils, which can cause toxicity in young vines. However, liming may reduce these toxic effects. The present study aimed to evaluate the effects of Cu toxicity on the root anatomy of young vines and the alleviation of Cu toxicity by lime applications to contaminated sandy soil. The treatments consisted of the addition of lime (0.0, 1.5 and 3.0 Mg ha(-1)) and two Cu concentrations (0 and 50 mg kg(-1)) to Typic Hapludalf soil. Young vines 'Niágara Branca' (Vitis labrusca L.) were obtained by micropropagation and cultivated for 70 days. The young vines grown with Cu and without liming presented a disorganized root structure; reduced root cap size; increased diameter (47%), cortex area (128%), vascular cylinder area (93%), and number of cortical layers and cells containing phenolic compounds (132%); and reduced root (41%), stem (44%) and leaf dry mass (21%) and height increase (55%). Moreover, Cu exposure reduced Ca concentrations (13%) and increased Cu concentrations (371%) in the roots. Liming, primarily with the highest tested dose, increased the soil pH (from 4.4 to 5.4-6.1), decreased the Cu concentration in the soil (extracted by CaCl2), increased the calcium (Ca) and magnesium (Mg) uptake by plants, prevented root anatomical changes and benefited young vine growth in soil with higher Cu concentrations.


Asunto(s)
Cobre/toxicidad , Raíces de Plantas/fisiología , Vitis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA