Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611429

RESUMEN

India has increased its wheat production phenomenally in the last two decades and it now has a buffer stock of 9.7 million tonnes. However, despite the release of several wheat cultivars, the end-use quality traits of Indian wheat varieties have not been explored in-depth to determine the increasing demand of the domestic processing industry as well as export. In this study, 55 wheat genotypes including 47 released varieties, and 8 genetic stocks were grown along with 10 Australian varieties grown during cropping seasons: 2019-2020 and 2020-2021 and diversity in different physiochemical and rheological traits was evaluated. They showed considerable diversity in all the quality traits studied. However, very few genotypes could be found suitable for any one end-use. Five genotypes were found to possess four to five traits for superior bread-making quality. Two varieties and three advanced breeding lines had up to four good chapati quality traits. None of the released varieties investigated had suitable traits for biscuit making; however, two breeding lines possessed requisite quality traits suitable for biscuit making. It is, therefore, concluded that systematic breeding efforts are required to develop genotypes that bring together the most important quality traits in a single genotype to be suitable for domestic industry as well as for export.

2.
J Fungi (Basel) ; 8(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887510

RESUMEN

The present systematic research on cultural, morphological, and pathogenic variability was carried out on eighty isolates of Sclerotinia sclerotiorum collected from major common bean production belts of North Kashmir. The isolates were found to vary in both cultural and morphological characteristics such as colony color and type, colony diameter, number of days for sclerotia initiation, sclerotia number per plate, sclerotial weight, and size. The colony color ranged between white and off-white with the majority. The colony was of three types, in majority smooth, some fluffy, and a few fluffy-at-center-only. Colony diameter ranged between 15.33 mm and 29 mm after 24 h of incubation. The isolates took 4 to 7 days for initiation of sclerotia and varied in size, weight, and number per plate ranging between 14 and 51.3. The sclerotial arrangement pattern on plates was peripheral, sub peripheral, peripheral, and subperipheral, arranged at the rim and scattered. A total of 22 Mycelial compatibility groups (MCGs) were formed with seven groups constituted by a single isolate. The isolates within MCGs were mostly at par with each other. The six isolates representing six MCGs showed variability in pathogenicity with isolate G04 as the most and B01 as the least virulent. The colony diameter and disease scores were positively correlated. Sclerotia were observed to germinate both myceliogenically and carpogenically under natural temperate conditions of Kashmir. Germplasm screening revealed a single resistant line and eleven partially resistant lines against most virulent isolates.

3.
J Fungi (Basel) ; 8(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35736038

RESUMEN

Mycoparasites cause serious losses in profitable mushroom farms worldwide. The negative impact of green mold (Trichoderma harzianum) reduces cropping surface and damages basidiomes, limiting production and harvest quality. The goal of the current study was to evaluate new generation fungicides, to devise suitable management strategies against the green mold disease under prevailing agro-climatic conditions. Six non-systemic and five systemic fungitoxicants were evaluated for their efficacy against pathogen, T. harzianum, and host, Agaricus bisporus, under in vitro conditions. Among non-systemic fungicides, chlorothalonil and prochloraz manganese with mean mycelium inhibition of 76.87 and 93.40 percent, respectively, were highly inhibitory against the pathogen. The least inhibition percentage of 7.16 of A. bisporus was exhibited by chlorothalonil. Under in vivo conditions, use of captan 50 WP resulted in a maximum yield of button mushroom of 14.96 kg/qt. So far, systemic fungicides were concerned, carbendazim proved extremely inhibitory to the pathogen (89.22%), with least inhibitory effect on host mycelium (1.56%). However, application of non-systemic fungitoxicants further revealed that fungicide prochloraz manganese 50 WP at 0.1-0.2 percent or chlorothalonil 50 WP at 0.2 percent, exhibited maximum disease control of 89.06-96.30 percent. Moreover, the results of systemic fungitoxicants showed that carbendazim 50 WP or thiophanate methyl 70 WP at 0.1 percent reduced disease to 2.29-3.69 percent, hence exhibiting the disease control of 80.11-87.66 percent. Under in vivo conditions, fungicide myclobutanil at 0.1 percent concentration produced the maximum button mushroom production of 12.87 kg/q.

4.
Front Genet ; 13: 866976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685816

RESUMEN

Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas-based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing.

5.
Front Genet ; 12: 735489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759957

RESUMEN

Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.

6.
Genes (Basel) ; 12(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073848

RESUMEN

Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Fitomejoramiento/métodos , Genoma de Planta
7.
Physiol Plant ; 173(1): 287-304, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33864701

RESUMEN

In the current era of rapid industrialization, the foremost challenge is the management of industrial wastes. Activities such as mining and industrialization spill over a large quantity of toxic waste that pollutes soil, water, and air. This poses a major environmental and health challenge. The toxic heavy metals present in the soil and water are entering the food chain, which in turn causes severe health hazards. Environmental clean-up and reclamation of heavy metal contaminated soil and water are very important, and it necessitates efforts of environmentalists, industrialists, scientists, and policymakers. Phytoremediation is a plant-based approach to remediate heavy metal/organic pollutant contaminated soil and water in an eco-friendly, cost-effective, and permanent way. This review covers the effect of heavy metal toxicity on plant growth and physiological process, the concept of heavy metal accumulation, detoxification, and the mechanisms of tolerance in plants. Based on plants' ability to uptake heavy metals and metabolize them within tissues, phytoremediation techniques have been classified into six types: phytoextraction, phytoimmobilization, phytovolatilization, phytodegradation, rhizofiltration, and rhizodegradation. The development of research in this area led to the identification of metal hyper-accumulators, which could be utilized for reclamation of contaminated soil through phytomining. Concurrently, breeding and biotechnological approaches can enhance the remediation efficiency. Phytoremediation technology, combined with other reclamation technologies/practices, can provide clean soil and water to the ecosystem.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Descontaminación , Ecosistema , Metales Pesados/toxicidad , Suelo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...