Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37790525

RESUMEN

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the CNS through donor-derived hematopoietic cells that become microglia-like cells. However, using standard conditioning approaches, hematopoietic stem cell transplantation is currently limited by low and slow engraftment of microglia-like cells. We report an efficient conditioning regimen based on Busulfan and a six-day course of microglia depletion using the colony-stimulating factor receptor 1 inhibitor PLX3397. Combining Busulfan-myeloablation and transient microglia depletion results in robust, rapid, and persistent microglia replacement by bone marrow-derived microglia-like cells throughout the CNS. Adding PLX3397 does not affect neurobehavior or has adverse effects on hematopoietic reconstitution. Through single-cell RNA sequencing and high-dimensional CyTOF mass cytometry, we show that microglia-like cells are a heterogeneous population and describe six distinct subpopulations. Though most bone-marrow-derived microglia-like cells can be classified as homeostatic microglia, their gene signature is a hybrid of homeostatic/embryonic microglia and border associated-macrophages. Busulfan-myeloablation and transient microglia depletion induce specific cytokines in the brain, ultimately combining myeloid proliferative and chemo-attractive signals that act locally to repopulate microglia from outside the niche. Importantly, this conditioning approach demonstrates therapeutic efficacy in a mouse model of GRN deficiency. Transplanting wild-type bone marrow into Grn-/- mice conditioned with Busulfan plus PLX3397 results in high engraftment of microglia-like cells in the brain and retina, restoring GRN levels and normalizing lipid metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...