Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetica ; 144(3): 279-87, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27010806

RESUMEN

Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.


Asunto(s)
Abejas/genética , Evolución Biológica , Animales , Cromosomas de Insectos , Hibridación Genómica Comparativa , Amplificación de Genes , Eliminación de Gen , Genes de Insecto , Genoma de los Insectos
2.
Insect Sci ; 23(4): 579-90, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25615619

RESUMEN

Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro, futsch) functional variations genes between A. mellifera and A. m. syriaca that could be used to develop an effective molecular tool for bee conservation and breeding programs to improve locally adapted strains such as syriaca and utilize their advantageous traits for the benefit of apiculture industry.


Asunto(s)
Apicultura , Abejas/genética , Abejas/parasitología , Varroidae , Animales , Abejas/inmunología , Conducta Animal , Drosophila melanogaster/genética , Genoma de los Insectos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Parásitos , Jordania , Polimorfismo de Nucleótido Simple , Transducción de Señal
3.
Genom Data ; 4: 24-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26484171

RESUMEN

Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...