Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 114(5): 2564-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311188

RESUMEN

We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques.


Asunto(s)
Encéfalo/fisiología , Señalización del Calcio , Ganglios de Invertebrados/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Imagen Óptica/métodos , Potenciales de Acción , Animales , Drosophila melanogaster , Larva/fisiología
2.
Dev Dyn ; 242(9): 1043-55, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23765941

RESUMEN

BACKGROUND: Vertebrate muscles are defined and patterned at the stage of primary myotube formation, but there is no clear description of how these cells form in vivo. Of particular interest is whether primary myotubes are "seeded" by a unique myoblast population that differentiates as mononucleated myocytes, similar to the founder myoblasts of insects. RESULTS: We analyzed the cell populations and processes leading to initiation of primary myogenesis in limb buds of rats and mice. Pax3(+ve) myogenic precursors migrate into the limb bud and initially consolidate into dorsal and ventral muscle masses in the absence of Pax7 expression. Approximately a day later, Pax7(+ve) cells appear in the central aspect of the limb base and subsequently throughout the limb muscle masses. Primary myogenesis is initiated within each muscle mass at a time when only Pax3, and not Pax7, protein can be detected. Primary myotubes form initially as elongate mononucleated myocytes, well before cleavage of the muscle masses has occurred. Multinucleate myotubes appear approximately a day later. A similar process is seen during initiation of chick limb primary myogenesis. CONCLUSIONS: Primary myotubes of vertebrate limb muscles are initiated by mononucleated myocytes, that appear structurally analogous to the founder myoblasts of insects.


Asunto(s)
Miembro Posterior/embriología , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/biosíntesis , Factores de Transcripción Paired Box/biosíntesis , Ratas
3.
PLoS Biol ; 10(10): e1001400, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055825

RESUMEN

Olfactory neuropiles across different phyla organize into glomerular structures where afferents from a single olfactory receptor class synapse with uniglomerular projecting interneurons. In adult Drosophila, olfactory projection interneurons, partially instructed by the larval olfactory system laid down during embryogenesis, pattern the developing antennal lobe prior to the ingrowth of afferents. In vertebrates it is the afferents that initiate and regulate the development of the first olfactory neuropile. Here we investigate for the first time the embryonic assembly of the Drosophila olfactory network. We use dye injection and genetic labelling to show that during embryogenesis, afferent ingrowth pioneers the development of the olfactory lobe. With a combination of laser ablation experiments and electrophysiological recording from living embryos, we show that olfactory lobe development depends sequentially on contact-mediated and activity-dependent interactions and reveal an unpredicted degree of similarity between the olfactory system development of vertebrates and that of the Drosophila embryo. Our electrophysiological investigation is also the first systematic study of the onset and developmental maturation of normal patterns of spontaneous activity in olfactory sensory neurons, and we uncover some of the mechanisms regulating its dynamics. We find that as development proceeds, activity patterns change, in a way that favours information transfer, and that this change is in part driven by the expression of olfactory receptors. Our findings show an unexpected similarity between the early development of olfactory networks in Drosophila and vertebrates and demonstrate developmental mechanisms that can lead to an improved coding capacity in olfactory neurons.


Asunto(s)
Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Vías Olfatorias/embriología , Células Receptoras Sensoriales/metabolismo , Animales , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Neuronas Receptoras Olfatorias/metabolismo
4.
Curr Biol ; 22(20): 1861-70, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22940472

RESUMEN

BACKGROUND: Many organisms, from bacteria to human hunter-gatherers, use specialized random walk strategies to explore their environment. Such behaviors are an efficient stratagem for sampling the environment and usually consist of an alternation between straight runs and turns that redirect these runs. Drosophila larvae execute an exploratory routine of this kind that consists of sequences of straight crawls, pauses, turns, and redirected crawls. Central pattern generating networks underlying rhythmic movements are distributed along the anteroposterior axis of the nervous system. The way in which the operation of these networks is incorporated into extended behavioral routines such as substrate exploration has not yet been explored. In particular, the part played by the brain in dictating the sequence of movements required is unknown. RESULTS: We report the use of a genetic method to block synaptic activity acutely in the brain and subesophageal ganglia (SOG) of larvae during active exploratory behavior. We show that the brain and SOG are not required for the normal performance of an exploratory routine. Alternation between crawls and turns is an intrinsic property of the abdominal and/or thoracic networks. The brain modifies this autonomous routine during goal-directed movements such as those of chemotaxis. Nonetheless, light avoidance behavior can be mediated in the absence of brain activity solely by the sensorimotor system of the abdomen and thorax. CONCLUSIONS: The sequence of movements for substrate exploration is an autonomous capacity of the thoracic and abdominal nervous system. The brain modulates this exploratory routine in response to environmental cues.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Drosophila/fisiología , Conducta Exploratoria/fisiología , Ganglios de Invertebrados/fisiología , Movimiento , Abdomen/inervación , Animales , Encéfalo/fisiología , Quimiotaxis , Larva/fisiología , Sinapsis/metabolismo , Tórax/inervación
5.
J Neurosci ; 31(29): 10445-50, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21775590

RESUMEN

Many parts of the nervous system become active before development is complete, including the embryonic spinal cord. Remarkably, although the subject has been debated for over a century (Harrison, 1904), it is still unclear whether such activity is required for normal development of motor circuitry. In Drosophila, embryonic motor output is initially poorly organized, and coordinated crawling-like behavior gradually emerges over the subsequent phase of development. We show that reversibly blocking synaptic transmission during this phase severely delays the first appearance of coordinated movements. When we interfere with the pattern of neuronal firing during this period, coordination is also delayed or blocked. We conclude that there is a period during which endogenous patterns of neuronal activity are required for the normal development of motor circuits in Drosophila.


Asunto(s)
Tipificación del Cuerpo/fisiología , Actividad Motora/fisiología , Movimiento/fisiología , Contracción Muscular/fisiología , Desempeño Psicomotor/fisiología , Vías Aferentes/embriología , Vías Aferentes/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Femenino , Lateralidad Funcional/genética , Lateralidad Funcional/fisiología , Proteínas Fluorescentes Verdes/genética , Masculino , Contracción Muscular/genética , Estimulación Luminosa/métodos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Temperatura
7.
BMC Res Notes ; 3: 154, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20525165

RESUMEN

BACKGROUND: The development, morphology and genetics of sensory neurons have been extensively studied in Drosophila. Sensory neurons in the body wall of larval Drosophila in particular have been the subject of numerous anatomical studies, however, little is known about the intrinsic electrical properties of larval sensory cells. FINDINGS: We performed whole cell patch recordings from an identified peripheral sensory cell, the dorsal bipolar sensory neuron (dbd) and measured voltage-gated ionic currents in 1st instar larvae. Voltage clamp analysis revealed that dbds have a TEA sensitive, non-inactivating IK type potassium current as well as a 4-AP sensitive, inactivating IA type potassium current. dbds also show a voltage-gated calcium current (ICa) and a voltage-gated sodium current (INa). CONCLUSIONS: This work provides a first characterization of voltage-activated ionic currents in an identified body-wall sensory neuron in larval Drosophila. Overall, we establish baseline physiology data for future studies aimed at understanding the ionic and genetic basis of sensory neuron function in fruit flies and other model organisms.

8.
PLoS Biol ; 7(6): e1000135, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19547742

RESUMEN

During the development of neural circuitry, neurons of different kinds establish specific synaptic connections by selecting appropriate targets from large numbers of alternatives. The range of alternative targets is reduced by well organised patterns of growth, termination, and branching that deliver the terminals of appropriate pre- and postsynaptic partners to restricted volumes of the developing nervous system. We use the axons of embryonic Drosophila sensory neurons as a model system in which to study the way in which growing neurons are guided to terminate in specific volumes of the developing nervous system. The mediolateral positions of sensory arbors are controlled by the response of Robo receptors to a Slit gradient. Here we make a genetic analysis of factors regulating position in the dorso-ventral axis. We find that dorso-ventral layers of neuropile contain different levels and combinations of Semaphorins. We demonstrate the existence of a central to dorsal and central to ventral gradient of Sema 2a, perpendicular to the Slit gradient. We show that a combination of Plexin A (Plex A) and Plexin B (Plex B) receptors specifies the ventral projection of sensory neurons by responding to high concentrations of Semaphorin 1a (Sema 1a) and Semaphorin 2a (Sema 2a). Together our findings support the idea that axons are delivered to particular regions of the neuropile by their responses to systems of positional cues in each dimension.


Asunto(s)
Drosophila , Red Nerviosa , Semaforinas/metabolismo , Animales , Axones/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neurópilo/metabolismo , Receptores de Superficie Celular/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo
9.
Development ; 135(22): 3707-17, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18927150

RESUMEN

We used non-invasive muscle imaging to study the onset of motor activity and emergence of coordinated movement in Drosophila embryos. Earliest movements are myogenic, and neurally controlled muscle contractions first appear with the onset of bursting activity 17 hours after egg laying. Initial episodes of activity are poorly organised and coordinated crawling sequences only begin to appear after a further hour of bursting. Thus, network performance improves during this first period of activity. The embryo continues to exhibit bursts of crawling-like sequences until shortly before hatching, while other reflexes also mature. Bursting does not begin as a reflex response to sensory input but appears to reflect the onset of spontaneous activity in the motor network. It does not require GABA-mediated transmission, and, by using a light-activated channel to excite the network, we demonstrate activity-dependent depression that may cause burst termination.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/embriología , Embrión no Mamífero/inervación , Movimiento/fisiología , Músculos/embriología , Músculos/inervación , Animales , Cinética , Larva , Contracción Muscular , Músculos/fisiología , Transmisión Sináptica
10.
PLoS Biol ; 6(10): e260, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18959482

RESUMEN

As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved.


Asunto(s)
Dendritas/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/genética , Dendritas/metabolismo , Drosophila , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Microscopía Confocal , Microscopía Fluorescente , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
11.
Fly (Austin) ; 2(4): 236-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18776741

RESUMEN

Studies on the formation of connections in the developing nervous system are greatly aided by methods that permit the differential visualisation and manipulation of pre- and postsynaptic partner neurons. This has been facilitated by the advent of the LexA-based, GAL4/UAS-independent, binary expression system. On the molecular side, the introduction of DNA sequences into expression vectors has been simplified by the Invitrogen Gateway cloning technology. We have developed cloning vectors that combine the Gateway cloning technology with the LexA-based genetic expression system. These vectors facilitate the creation of driver and reporter constructs for the generation of Drosophila transgenic lines for the new LexA-based binary transcriptional system. We further report a new LexA::GAD sensory neuron driver and a red fluorescent membrane targeted lexAop reporter designed to complement the existing GFP-based lexAop reporter. Using these transgenic lines we have been able to differentially label motor and sensory neuron projections in the ventral nerve cord of Drosophila larvae.


Asunto(s)
Proteínas Bacterianas , Drosophila melanogaster/fisiología , Vectores Genéticos , Serina Endopeptidasas , Animales , Drosophila melanogaster/citología , Larva/citología , Larva/fisiología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología
12.
Dev Neurobiol ; 68(3): 309-16, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18044732

RESUMEN

Many animals show regionally specialized patterns of movement along the body axis. In vertebrates, spinal networks regulate locomotion, while the brainstem controls movements of respiration and feeding. Similarly, amongst invertebrates diversification of appendages along the body axis is tied to the performance of characteristically different movements such as those required for feeding, locomotion, and respiration. Such movements require locally specialized networks of nerves and muscles. Here we use the regionally differentiated movements of larval crawling in Drosophila to investigate how the formation of a locally specialized locomotor network is genetically determined. By loss and gain of function experiments we show that particular Hox gene functions are necessary and sufficient to dictate the formation of a neuromuscular network that orchestrates the movements of peristaltic locomotion.


Asunto(s)
Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/fisiología , Locomoción/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Tipificación del Cuerpo/genética , Drosophila , Embrión no Mamífero , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculos/fisiología , Mutación/fisiología
13.
Mol Cell Neurosci ; 32(1-2): 91-101, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16682215

RESUMEN

In the mammalian peripheral nervous system, nerve insulation depends on the integrity of paranodal junctions between axons and their ensheathing glia. Ultrastructurally, these junctions are similar to the septate junctions (SJ) of invertebrates. In Drosophila, SJ are found in epithelia and in the glia that form the blood-brain barrier (BBB). Drosophila NeurexinIV and Gliotactin, two components of SJ, play an important role in nerve ensheathment and insulation. Here, we report that Drosophila Lachesin (Lac), another SJ component, is also required for a functional BBB. In the developing nervous system, Lac is expressed in a dynamic pattern by surface glia and a subset of neurons. Ultrastructural analysis of Lac mutant embryos shows poorly developed SJ in surface glia and epithelia where Lac is expressed. Mutant embryos undergo a phase of hyperactivity, with unpatterned muscle contractions, and subsequently become paralyzed and fail to hatch. We propose that this phenotype reflects a failure in BBB function.


Asunto(s)
Barrera Hematoencefálica/anomalías , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Uniones Intercelulares/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipercinesia/genética , Hipercinesia/metabolismo , Hipercinesia/fisiopatología , Uniones Intercelulares/patología , Uniones Intercelulares/ultraestructura , Microscopía Electrónica de Transmisión , Contracción Muscular/genética , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/ultraestructura , Neuroglía/metabolismo , Neuroglía/patología , Neuroglía/ultraestructura , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Fenotipo
14.
Genesis ; 39(4): 240-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15286996

RESUMEN

We constructed an enhancer-trap element, P[GAL80], that encodes the yeast GAL80 repressor to refine expression of transgenes driven by the binary GAL4/UAS system. GAL80 blocks GAL4 activity by binding to its transcriptional activation domain. We screened GAL80 enhancer-traps for repression of GAL4-induced green fluorescent protein (GFP) in the intact larval nervous system. We selected one line that repressed GFP in a large set of cholinergic neurons. This line was used to refine GFP expression from a set of over 200 neurons to a subset of 20 neurons in a preselected GAL4 line. Expression of tetanus neurotoxin, a potent blocker of neurotransmitter release, in these 20 neurons reproduced an aberrant larval turning behavior previously assigned to the parental set of 200 neurons. Our results suggest that targeted GAL80 expression could become a useful means of spatially refining transgene expression in Drosophila.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Marcación de Gen/métodos , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Metaloendopeptidasas/metabolismo , Microscopía Confocal , Movimiento/fisiología , Neuronas/metabolismo , Toxina Tetánica/metabolismo , Factores de Transcripción/genética , Transformación Genética , Transgenes/genética , Levaduras/genética
15.
Development ; 131(15): 3761-72, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15262890

RESUMEN

We have examined the mechanisms underlying the setting of myotubes and choice of myotube number in adult Drosophila. We find that the pattern of adult myotubes is prefigured by a pattern of duf-lacZ-expressing myoblasts at appropriate locations. Selective expression of duf-lacZ in single myoblasts emerges from generalized, low-level expression in all adult myoblasts during the third larval instar. The number of founders, thus chosen, corresponds to the number of fibres in a muscle. In contrast to the embryo, the selection of individual adult founder cells during myogenesis does not depend on Notch-mediated lateral inhibition. Our results suggest a general mechanism by which multi-fibre muscles can be patterned.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Larva/fisiología , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Animales , Linaje de la Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/crecimiento & desarrollo , Genes Reporteros , Larva/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/citología , Músculos/fisiología , Mioblastos/citología , Receptores Notch , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
16.
Structure ; 12(1): 75-84, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14725767

RESUMEN

Human thymidine phosphorylase (HTP), also known as platelet-derived endothelial cell growth factor (PD-ECGF), is overexpressed in certain solid tumors where it is linked to poor prognosis. HTP expression is utilized for certain chemotherapeutic strategies and is also thought to play a role in tumor angiogenesis. We determined the structure of HTP bound to the small molecule inhibitor 5-chloro-6-[1-(2-iminopyrrolidinyl) methyl] uracil hydrochloride (TPI). The inhibitor appears to mimic the substrate transition state, which may help explain the potency of this inhibitor and the catalytic mechanism of pyrimidine nucleotide phosphorylases (PYNPs). Further, we have confirmed the validity of the HTP structure as a template for structure-based drug design by predicting binding affinities for TPI and other known HTP inhibitors using in silico docking techniques. This work provides the first structural insight into the binding mode of any inhibitor to this important drug target and forms the basis for designing novel inhibitors for use in anticancer therapy.


Asunto(s)
Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Pirrolidinas/química , Timidina Fosforilasa/metabolismo , Uracilo/análogos & derivados , Uracilo/química , Cristalización , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Estructura Terciaria de Proteína , Pirrolidinas/farmacología , Uracilo/farmacología
17.
PLoS Biol ; 1(2): E41, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14624243

RESUMEN

The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.


Asunto(s)
Dendritas/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Músculos/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Diferenciación Celular , Sistema Nervioso Central/patología , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Inmunohistoquímica , Modelos Anatómicos , Modelos Biológicos , Neuronas Motoras/metabolismo , Músculos/patología , Neuronas/metabolismo , Neuronas Aferentes/patología , Plásmidos/metabolismo , Terminales Presinápticos , Factores de Tiempo , Transgenes
18.
Bioorg Med Chem ; 11(12): 2617-26, 2003 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-12757727

RESUMEN

A library of 51 analogues of the naturally occurring protein farnesyltransferase inhibitor pepticinnamin E was investigated biologically. Several compounds with pronounced inhibitory activity were discovered with the lowest IC(50) value reaching 1 microM. The library contains inhibitors which are competitive to either farnesylpyrophosphate or the peptide substrate and a bisubstrate inhibitor. This activity is supported and rationalized by molecular modelling experiments and different binding modes of the inhibitors deduced from them. Several compounds induced apoptosis in a Ras-transformed tumour cell line, and in one case this correlated with farnesyltransferase-inhibiting activity.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Oligopéptidos/química , Oligopéptidos/farmacología , Animales , Sitios de Unión , Línea Celular Tumoral , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa , Humanos , Modelos Moleculares , Biblioteca de Péptidos , Ratas , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas ras/metabolismo
19.
Neuron ; 37(1): 41-51, 2003 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-12526771

RESUMEN

Drosophila sensory neurons form distinctive terminal branch patterns in the developing neuropile of the embryonic central nervous system. In this paper we make a genetic analysis of factors regulating arbor position. We show that mediolateral position is determined in a binary fashion by expression (chordotonal neurons) or nonexpression (multidendritic neurons) of the Robo3 receptor for the midline repellent Slit. Robo3 expression is one of a suite of chordotonal neuron properties that depend on expression of the proneural gene atonal. Different features of terminal branches are separately regulated: an arbor can be shifted mediolaterally without affecting its dorsoventral location, and the distinctive remodeling of one arbor continues as normal despite this arbor shifting to an abnormal position in the neuropile.


Asunto(s)
Axones/ultraestructura , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Sistema Nervioso/embriología , Receptores Inmunológicos/metabolismo , Animales , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Comunicación Celular/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Lateralidad Funcional/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Malformaciones del Sistema Nervioso/genética , Plasticidad Neuronal/genética , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Receptores Inmunológicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA