Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 6(3): e03590, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32195404

RESUMEN

The organic composition of produced waters (flowback and formation waters) from the middle member of the Bakken Formation and the Three Forks Formation in the Williston Basin, North Dakota were examined to aid in the remediation of surface contamination and help develop treatment methods for produced-water recycling. Twelve produced water samples were collected from the Bakken and Three Forks Formations and analyzed for non-purgeable dissolved organic carbon (NPDOC), acetate, and extractable hydrocarbons. NPDOC and acetate concentrations from sampled wells from ranged from 33-190 mg per liter (mg/L) and 16-40 mg/L, respectively. Concentrations of individual extractable hydrocarbon compounds ranged from less than 1 to greater than 400 µg per liter (µg/L), and included polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, glycol ethers, and cyclic ketones. While the limited number of samples, varying well production age, and lack of knowledge of on-going well treatments complicate conclusions, this report adds to the limited knowledge of organics in produced waters from the Bakken and Three Forks Formations.

2.
J Environ Qual ; 31(1): 287-99, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11837434

RESUMEN

We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as delta34S in parts per thousand [/1000] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate-reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and delta34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and delta34S values distinct from those found in surface water. The delta34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Azufre/análisis , Contaminantes del Agua/análisis , Agricultura , Animales , Disponibilidad Biológica , Fertilizantes , Peces , Florida , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/química , Lluvia , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA