Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(48): 26222-26237, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37983387

RESUMEN

Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.

2.
Chem Rev ; 123(9): 6233-6256, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198176

RESUMEN

Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.

3.
J Am Chem Soc ; 144(41): 18797-18802, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36215721

RESUMEN

We report a strategy to integrate atomically dispersed iron within a heterogeneous nitrogen-doped carbon (N-C) support, inspired by routes for metalation of molecular macrocyclic iron complexes. The N-C support, derived from pyrolysis of a ZIF-8 metal-organic framework, is metalated via solution-phase reaction with FeCl2 and tributyl amine, as a Brønsted base, at 150 °C. Fe active sites are characterized by 57Fe Mössbauer spectroscopy and aberration-corrected scanning transmission electron microscopy. The site density can be increased by selective removal of Zn2+ ions from the N-C support prior to metalation, resembling the transmetalation strategy commonly employed for the preparation of molecular Fe-macrocycles. The utility of this approach is validated by the higher catalytic rates (per total Fe) of these materials relative to established Fe-N-C catalysts, benchmarked using an aerobic oxidation reaction.


Asunto(s)
Carbono , Nitrógeno , Nitrógeno/química , Carbono/química , Hierro/química , Aminas
4.
J Am Chem Soc ; 144(2): 922-927, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985869

RESUMEN

M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions. The present study explores the mechanistic relationship between the O2 reduction mechanism under electrochemical and chemical conditions. Chemical O2 reduction is investigated via the aerobic oxidation of a hydroquinone, in which the O-H bonds supply the protons and electrons needed for O2 reduction to water. Mechanistic studies have been conducted to elucidate whether the M-N-C catalyst couples two independent half-reactions (IHR), similar to electrode-mediated processes, or mediates a direct inner-sphere reaction (ISR) between O2 and the organic molecule. Kinetic data support the latter ISR pathway. This conclusion is reinforced by rate/potential correlations that reveal significantly different Tafel slopes, implicating different mechanisms for chemical and electrochemical O2 reduction.


Asunto(s)
Cobalto/química , Hierro/química , Oxígeno/química , Carbono/química , Catálisis , Electrólisis/métodos , Hidroquinonas/química , Iones/química , Cinética , Nitrógeno/química , Oxidación-Reducción
5.
Chem Sci ; 12(13): 4699-4708, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168752

RESUMEN

Reactions catalyzed within porous inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, collectively referred to as "solvent effects". Transition state theory treatments define how solvation phenomena enter kinetic rate expressions, and identify two distinct types of solvent effects that originate from molecular clustering and from the solvation of such clusters by extended solvent networks. We review examples from the recent literature that investigate reactions within microporous zeolite catalysts to illustrate these concepts, and provide a critical appraisal of open questions in the field where future research can aid in developing new chemistry and catalyst design principles.

6.
Chem Sci ; 11(27): 7102-7122, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-33250979

RESUMEN

Aqueous-phase reactions within microporous Brønsted acids occur at active centers comprised of water-reactant-clustered hydronium ions, solvated within extended hydrogen-bonded water networks that tend to stabilize reactive intermediates and transition states differently. The effects of these diverse clustered and networked structures were disentangled here by measuring turnover rates of gas-phase ethanol dehydration to diethyl ether (DEE) on H-form zeolites as water pressure was increased to the point of intrapore condensation, causing protons to become solvated in larger clusters that subsequently become solvated by extended hydrogen-bonded water networks, according to in situ IR spectra. Measured first-order rate constants in ethanol quantify the stability of SN2 transition states that eliminate DEE relative to (C2H5OH)(H+)(H2O) n clusters of increasing molecularity, whose structures were respectively determined using metadynamics and ab initio molecular dynamics simulations. At low water pressures (2-10 kPa H2O), rate inhibition by water (-1 reaction order) reflects the need to displace one water by ethanol in the cluster en route to the DEE-formation transition state, which resides at the periphery of water-ethanol clusters. At higher water pressures (10-75 kPa H2O), water-ethanol clusters reach their maximum stable size ((C2H5OH)(H+)(H2O)4-5), and water begins to form extended hydrogen-bonded networks; concomitantly, rate inhibition by water (up to -3 reaction order) becomes stronger than expected from the molecularity of the reaction, reflecting the more extensive disruption of hydrogen bonds at DEE-formation transition states that contain an additional solvated non-polar ethyl group compared to the relevant reactant cluster, as described by non-ideal thermodynamic formalisms of reaction rates. Microporous voids of different hydrophilic binding site density (Beta; varying H+ and Si-OH density) and different size and shape (Beta, MFI, TON, CHA, AEI, FAU), influence the relative extents to which intermediates and transition states disrupt their confined water networks, which manifest as different kinetic orders of inhibition at high water pressures. The confinement of water within sub-nanometer spaces influences the structures and dynamics of the complexes and extended networks formed, and in turn their ability to accommodate the evolution in polarity and hydrogen-bonding capacity as reactive intermediates become transition states in Brønsted acid-catalyzed reactions.

7.
Angew Chem Int Ed Engl ; 59(42): 18686-18694, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32659034

RESUMEN

Zeolite reactivity depends on the solvating environments of their micropores and the proximity of their Brønsted acid sites. Turnover rates (per H+ ) for methanol and ethanol dehydration increase with the fraction of H+ sites sharing six-membered rings of chabazite (CHA) zeolites. Density functional theory (DFT) shows that activation barriers vary widely with the number and arrangement of Al (1-5 per 36 T-site unit cell), but cannot be described solely by Al-Al distance or density. Certain Al distributions yield rigid arrangements of anionic charge that stabilize cationic intermediates and transition states via H-bonding to decrease barriers. This is a key feature of acid catalysis in zeolite solvents, which lack the isotropy of liquid solvents. The sensitivity of polar transition states to specific arrangements of charge in their solvating environments and the ability to position such charges in zeolite lattices with increasing precision herald rich catalytic diversity among zeolites of varying Al arrangement.

8.
Angew Chem Int Ed Engl ; 58(46): 16422-16426, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31529799

RESUMEN

Ab-initio molecular dynamics simulations and transmission infrared spectroscopy are employed to characterize the structure of water networks in defect-functionalized microporous zeolites. Thermodynamically stable phases of clustered water molecules are localized at some of the defects in zeolite Beta, which include catalytic sites such as framework Lewis acidic Sn atoms in closed and hydrolyzed-open forms, as well as silanol nests. These water clusters compete with ideal gas-like structures at low water densities and pore-filling phases at higher water densities, with the equilibrium phase determined by the water chemical potential. The physical characteristics of these phases are determined by the defect identity, with the local binding and orientation of hydroxyl moieties around the defects playing a central role. The results suggest general principles for how the structure of polar solvents in microporous solid acids is influenced by local defect functionalization, and the thermodynamic stability of the condensed phases surrounding such sites, in turn, implies that the catalysis of Lewis acids will be influenced by local water ordering.

9.
J Am Chem Soc ; 140(43): 14244-14266, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30265002

RESUMEN

Lewis acid sites in zeolites catalyze aqueous-phase sugar isomerization at higher turnover rates when confined within hydrophobic rather than within hydrophilic micropores; however, relative contributions of competitive water adsorption at active sites and preferential stabilization of isomerization transition states have remained unclear. Here, we employ a suite of experimental and theoretical techniques to elucidate the effects of coadsorbed water on glucose isomerization reaction coordinate free energy landscapes. Transmission IR spectra provide evidence that water forms extended hydrogen-bonding networks within hydrophilic but not hydrophobic micropores of Beta zeolites. Aqueous-phase glucose isomerization turnover rates measured on Ti-Beta zeolites transition from first-order to zero-order dependence on glucose thermodynamic activity, as Lewis acidic Ti sites transition from water-covered to glucose-covered, consistent with intermediates identified from modulation excitation spectroscopy during in situ attenuated total reflectance IR experiments. First-order and zero-order isomerization rate constants are systematically higher (by 3-12×, 368-383 K) when Ti sites are confined within hydrophobic micropores. Apparent activation enthalpies and entropies reveal that glucose and water competitive adsorption at Ti sites depend weakly on confining environment polarity, while Gibbs free energies of hydride-shift isomerization transition states are lower when confined within hydrophobic micropores. DFT calculations suggest that interactions between intraporous water and isomerization transition states increase effective transition state sizes through second-shell solvation spheres, reducing primary solvation sphere flexibility. These findings clarify the effects of hydrophobic pockets on the stability of coadsorbed water and isomerization transition states and suggest design strategies that modify micropore polarity to influence turnover rates in liquid water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...