Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762180

RESUMEN

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.


Asunto(s)
Integrasa de VIH , VIH-1 , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/metabolismo , VIH-1/fisiología , Humanos , ADN Viral/metabolismo , ADN Viral/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química
2.
Cell Rep ; 42(7): 112744, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37418324

RESUMEN

Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.


Asunto(s)
Cinesinas , Neuronas , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Movimiento Celular , Interneuronas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo
3.
Antimicrob Agents Chemother ; 67(7): e0046223, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37310224

RESUMEN

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Humanos , Replicación Viral , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Antivirales/farmacología , Integrasa de VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Regulación Alostérica
4.
PLoS One ; 17(12): e0279038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36520869

RESUMEN

The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFß, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.


Asunto(s)
Vectores Genéticos , Virus Vaccinia , Animales , Virus Vaccinia/genética , Vectores Genéticos/genética , Línea Celular , Mamíferos/genética
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430221

RESUMEN

Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.


Asunto(s)
Integrasa de VIH , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , ARN Guía de Kinetoplastida , Integrasa de VIH/genética , ARN Viral/genética , ARN Viral/metabolismo , Factores de Transcripción
6.
Biomedicines ; 10(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052693

RESUMEN

The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5' untranslated region (5'-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.

7.
Methods Mol Biol ; 1764: 315-328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605924

RESUMEN

Purification of proteins containing disordered regions and participating in transient complexes is often challenging because of the small amounts available after purification, their heterogeneity, instability, and/or poor solubility. To circumvent these difficulties, we set up a methodology that enables the production of stable complexes in large amounts for structural and functional studies. In this chapter, we describe the methodology used to establish the best cell culture conditions and buffer compositions to optimize soluble protein production and their stabilization through protein complex formation. Two examples of challenging protein families are described, namely, the human steroid nuclear receptors and the HIV-1 pre-integration complexes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Cromatografía de Afinidad/métodos , Integrasa de VIH/aislamiento & purificación , Coactivador 2 del Receptor Nuclear/aislamiento & purificación , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Receptores de Glucocorticoides/aislamiento & purificación , Factores de Transcripción/aislamiento & purificación , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Integrasa de VIH/química , Integrasa de VIH/metabolismo , Humanos , Coactivador 2 del Receptor Nuclear/química , Coactivador 2 del Receptor Nuclear/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
8.
Sci Rep ; 6: 39507, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27996044

RESUMEN

The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5'-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.


Asunto(s)
Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por VIH/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Regiones no Traducidas 5' , Alelos , Antivirales/farmacología , Citosina Desaminasa/metabolismo , Células HEK293 , Humanos , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
9.
Nucleic Acids Res ; 44(16): 7830-47, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27439712

RESUMEN

Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms.


Asunto(s)
ADN Circular/química , ADN Viral/química , Conformación de Ácido Nucleico , Retroviridae/fisiología , Integración Viral , Biblioteca de Genes , Integrasa de VIH/metabolismo , VIH-1/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo
10.
Retrovirology ; 12: 53, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26105074

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Asunto(s)
Autofagia , Citidina Desaminasa/metabolismo , VIH-1/fisiología , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Células Epiteliales/virología , Histona Desacetilasa 6 , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis
11.
Viruses ; 7(1): 199-218, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25606970

RESUMEN

Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Biosíntesis de Proteínas , Replicación Viral , Humanos
12.
J Virol ; 87(11): 6492-506, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576497

RESUMEN

The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.


Asunto(s)
Citidina Desaminasa/metabolismo , Infecciones por VIH/enzimología , VIH-1/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Secuencias de Aminoácidos , Citidina Desaminasa/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Humanos , Multimerización de Proteína , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
13.
Virus Res ; 169(2): 361-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22728817

RESUMEN

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.


Asunto(s)
VIH-1/fisiología , Chaperonas Moleculares/metabolismo , Multimerización de Proteína , ARN de Transferencia de Lisina/metabolismo , ARN Viral/metabolismo , Ensamble de Virus , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
15.
J Biol Chem ; 284(50): 34911-7, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19840948

RESUMEN

Nascent mRNAs produced by transcription in the nucleus are subsequently processed and packaged into mRNA ribonucleoprotein particles (messenger ribonucleoproteins (mRNPs)) before export to the cytoplasm. Here, we have used the poly(A)-binding protein Nab2 to isolate mRNPs from yeast under conditions that preserve mRNA integrity. Upon Nab2-tandem affinity purification, several mRNA export factors were co-enriched (Yra1, Mex67, THO-TREX) that were present in mRNPs of different size and mRNA length. High-throughput sequencing of the co-precipitated RNAs indicated that Nab2 is associated with the bulk of yeast transcripts with no specificity for different mRNA classes. Electron microscopy revealed that many of the mRNPs have a characteristic elongated structure. Our data suggest that mRNPs, although associated with different mRNAs, have a unifying core structure.


Asunto(s)
Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilación de la Expresión Génica , Conformación de Ácido Nucleico , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/aislamiento & purificación , Unión Proteica , Conformación Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
16.
J Virol ; 79(22): 14102-11, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16254345

RESUMEN

Most human herpesviruses, including Epstein-Barr virus (EBV), express a protein which functions primarily as an mRNA export factor. Previously, we deleted the gene for the Epstein-Barr virus mRNA export factor EB2 from the EBV genome and then introduced the mutated genome into 293 cells. Using a transcomplementation assay in which ectopic expression of the transcription factor EB1/ZEBRA was sufficient to induce the EBV productive cycle, we showed that Ori-Lyt-dependent replication of the EBV DNA occurs in the absence of EB2, indicating that EB2 is not essential for the expression and export of early mRNAs. However, in the absence of EB2, no infectious viral particles are produced (H. Gruffat, J. Batisse, D. Pich, B. Neuhierl, E. Manet, W. Hammerschmidt, and A. Sergeant, J. Virol. 76:9635-9644, 2002). In this report, we now show that EB2 is essential for the nuclear export of most, but not all, late mRNAs produced from intronless genes that translate into proteins involved in intranuclear capsid assembly and maturation. As a consequence, we show that EB2 is essential for the proper assembly of intranuclear capsids. Interestingly, the late BLLF1 gene contains an intron, and both unspliced and spliced mRNAs must be exported to the cytoplasm to be translated into gp350 and gp220, respectively (M. Hummel, D. A. Thorley-Lawson, and E. Kieff, J. Virol. 49:413-417, 1984). Our results also demonstrate that although BLLF1 spliced mRNAs are exported to the cytoplasm independently of EB2, EB2 is essential for the nuclear export of unspliced BLLF1 mRNA. In the same assay, herpes simplex virus 1 ICP27 completely inhibited the nuclear export of BLLF1 spliced mRNAs whereas unspliced BLLF1 mRNAs were exported, confirming that in a physiological assay, ICP27 inhibits splicing.


Asunto(s)
Herpesvirus Humano 4/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/genética , ARN Viral/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN , Vectores Genéticos , Humanos , Sistemas de Lectura Abierta , Mapeo Restrictivo , Transfección
17.
J Virol ; 76(19): 9635-44, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12208942

RESUMEN

The splicing machinery which positions a protein export complex near the exon-exon junction mediates nuclear export of mRNAs generated from intron-containing genes. Many Epstein-Barr virus (EBV) early and late genes are intronless, and an alternative pathway, independent of splicing, must export the corresponding mRNAs. Since the EBV EB2 protein induces the cytoplasmic accumulation of intronless mRNA, it is tempting to speculate that EB2 is a viral adapter involved in the export of intronless viral mRNA. If this is true, then the EB2 protein is essential for the production of EBV infectious virions. To test this hypothesis, we generated an EBV mutant in which the BMLF1 gene, encoding the EB2 protein, has been deleted (EBV(BMLF1-KO)). Our studies show that EB2 is necessary for the production of infectious EBV and that its function cannot be transcomplemented by a cellular factor. In the EBV(BMLF1-KO) 293 cells, oriLyt-dependent DNA replication was greatly enhanced by EB2. Accordingly, EB2 induced the cytoplasmic accumulation of a subset of EBV early mRNAs coding for essential proteins implicated in EBV DNA replication during the productive cycle. Two herpesvirus homologs of the EB2 protein, the herpes simplex virus type 1 protein ICP27 and, the human cytomegalovirus protein UL69, only partly rescued the phenotype of the EBV(BMLF1-KO) mutant, indicating that some EB2 functions in virus production cannot be transcomplemented by ICP27 and UL69.


Asunto(s)
Replicación del ADN , Herpesvirus Humano 4/fisiología , Fosfoproteínas/fisiología , Transactivadores/fisiología , Proteínas Virales/fisiología , Replicación Viral , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Datos de Secuencia Molecular , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA