Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551079

RESUMEN

Antioxidants are responsible for many beneficial health effects and are highly present in natural products, such as kombucha. Biosensors' development targeting antioxidants and phytomarkers are an active research field. This work aimed to propose a voltammetric polyphenolxidase (Cordia superba) biosensor for catechin and total phenolic compounds quantification in kombucha samples. Optimizations were performed on the biosensor of Cordia superba to improve the accuracy and selectivity, such as enzyme-substrate interaction time, analytical responses for different patterns and signal differences with the carbon paste and modified carbon paste electrode. Kombucha probiotic drink samples were fermented for 7 to 14 days at a controlled temperature (28 ± 2 °C). A linear curve was made for catechin with a range of 10.00 to 60.00 µM, with a limit of detection of 0.13 µM and limit of quantification of 0.39 µM. The biosensor proposed in this work was efficient in determining the patterns of phenolic compounds in kombucha.


Asunto(s)
Técnicas Biosensibles , Catequina , Cordia , Antioxidantes , Fenoles , Carbono/química
2.
Oxid Med Cell Longev ; 2022: 1992039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368871

RESUMEN

Growing concerns on free radicals are the oxidative processes associated with physiological damage. The consumption of functional foods and use of plants with antioxidant capacity are widespread. Given the importance of determining antioxidant capacity in relation to the therapeutic effect, this study was aimed at evaluating cinnamon extract (Cinnamomum sp.) in commercial samples by spectrophotometric and voltammetric methods and assessing the vascular activity of some samples. The spectrophotometric methods performed were DPPH (1,1-diphenyl-2-picrihydrazine), ABTS (2,21-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)), and Folin-Ciocalteu radical sequestration assays. For the electrochemical experiments, a three-electrode system was used, consisting of carbon paste electrode, platinum wire, and Ag/AgCl/KClsat, representing the working, auxiliary, and reference electrodes, respectively. The electroanalytical methods used were differential pulse, square wave, and cyclic voltammetries. The extracts were prepared in hydroalcoholic solution. A calibration curve with gallic acid was calculated to quantify their equivalent amounts in the analyzed extract. The correlation between the electrochemical approach and the total phenols calculated by the ABTS, DPPH, and Folin-Ciocalteu methods was 0.63, 0.7, and 0.73, respectively, with 1 being an ideal directly proportional correlation. The correlation between spectrophotometric methods was 0.83. A biosensor was developed in a carbon paste electrode using the enzyme laccase, obtained by the fungus Marasmiellus colocasiae. It was observed that the antioxidant profile of the cinnamon samples had an analytical sign improvement of up to 4 times when compared with the electrode without the modification. The samples were analyzed by mass spectrometer, and the main chemical markers found were coumarin, cinnamaldehyde, and eugenol. Pharmacological trials showed that these samples also induce a significant vasorelaxant effect associated to antioxidant potential on vascular injury induced by oxidative stress. Thus, cinnamon showed a high antioxidant capacity, in agreement with the results obtained in other studies, emphasizing its importance as a functional food.


Asunto(s)
Antioxidantes , Cinnamomum zeylanicum , Antioxidantes/farmacología , Oxidación-Reducción , Fenoles , Espectrofotometría
3.
Biosensors (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810105

RESUMEN

In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = -0.152 * (catechin) - 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = -0.0415 * (gallic acid) - 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.


Asunto(s)
Técnicas Biosensibles , Hongos/aislamiento & purificación , Té de Kombucha/microbiología , Té/microbiología , Calibración , Catequina/análisis , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Ácido Gálico/análisis , Té de Kombucha/análisis , Fenoles/análisis , Extractos Vegetales , Espectrofotometría , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...