Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Ecol Resour ; 22(3): 1149-1167, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34637588

RESUMEN

Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.


Asunto(s)
Escarabajos , Pinus , Gorgojos , Animales , Canadá , Cromosomas , Escarabajos/genética , Genómica , Pinus/genética , Gorgojos/genética
2.
Ecol Evol ; 6(17): 6292-300, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27648243

RESUMEN

Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single-nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range-wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.

3.
BMC Microbiol ; 11: 251, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22085419

RESUMEN

BACKGROUND: The alphaproteobacterium Wolbachia pipientis, the most common endosymbiont in eukaryotes, is found predominantly in insects including many Drosophila species. Although Wolbachia is primarily vertically transmitted, analysis of its genome provides evidence for frequent horizontal transfer, extensive recombination and numerous mobile genetic elements. The genome sequence of Wolbachia in Drosophila simulans Riverside (wRi) is available along with the integrated bacteriophages, enabling a detailed examination of phage genes and the role of these genes in the biology of Wolbachia and its host organisms. Wolbachia is widely known for its ability to modify the reproductive patterns of insects. One particular modification, cytoplasmic incompatibility, has previously been shown to be dependent on Wolbachia density and inversely related to the titer of lytic phage. The wRi genome has four phage regions, two WORiBs, one WORiA and one WORiC. RESULTS: In this study specific primers were designed to distinguish between these four prophage types in wRi, and quantitative PCR was used to measure the titer of bacteriophages in testes, ovaries, embryos and adult flies. In all tissues tested, WORiA and WORiB were not found to be present in excess of their integrated prophages; WORiC, however, was found to be present extrachromosomally. WORiC is undergoing extrachromosomal replication in wRi. The density of phage particles was found to be consistent in individual larvae in a laboratory population. The WORiC genome is organized in conserved blocks of genes and aligns most closely with other known lytic WO phages, WOVitA and WOCauB. CONCLUSIONS: The results presented here suggest that WORiC is the lytic form of WO in D. simulans, is undergoing extrachromosomal replication in wRi, and belongs to a conserved family of phages in Wolbachia.


Asunto(s)
Bacteriófagos/genética , Drosophila/microbiología , Profagos/genética , Wolbachia/virología , Animales , Bacteriófagos/fisiología , ADN Viral/genética , Femenino , Genoma Viral , Larva/microbiología , Masculino , Filogenia , Profagos/fisiología , Análisis de Secuencia de ADN , Replicación Viral
4.
PLoS One ; 6(5): e19708, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21573076

RESUMEN

Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studying of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility.


Asunto(s)
Drosophila/microbiología , Genes Virales/genética , Interacciones Huésped-Patógeno/genética , Profagos/enzimología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Wolbachia/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Southern Blotting , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Reacción en Cadena de la Polimerasa , Profagos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA