Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 399, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264416

RESUMEN

Regulatory T cells (Tregs) play a key role in suppressing systemic effector immune responses, thereby preventing autoimmune diseases but also potentially contributing to tumor progression. Thus, there is great interest in clinically manipulating Tregs, but the precise mechanisms governing in vitro-induced Treg (iTreg) differentiation are not yet fully understood. Here, we used multiparametric mass cytometry to phenotypically profile human iTregs during the early stages of in vitro differentiation at single-cell level. A panel of 25 metal-conjugated antibodies specific to markers associated with human Tregs was used to characterize these immunomodulatory cells. We found that iTregs highly express the transcription factor FOXP3, as well as characteristic Treg-associated surface markers (e.g. CD25, PD1, CD137, CCR4, CCR7, CXCR3, and CD103). Expression of co-inhibitory factors (e.g. TIM3, LAG3, and TIGIT) increased slightly at late stages of iTreg differentiation. Further, CD103 was upregulated on a subpopulation of iTregs with greater suppressive capacity than their CD103- counterparts. Using mass-spectrometry-based proteomics, we showed that sorted CD103+ iTregs express factors associated with immunosuppression. Overall, our study highlights that during early stages of differentiation, iTregs resemble memory-like Treg features with immunosuppressive activity, and provides opportunities for further investigation into the molecular mechanisms underlying Treg function.


Asunto(s)
Antígenos CD , Diferenciación Celular , Factores de Transcripción Forkhead , Cadenas alfa de Integrinas , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Antígenos CD/metabolismo , Antígenos CD/inmunología , Cadenas alfa de Integrinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/inmunología , Fenotipo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Tolerancia Inmunológica , Receptores Inmunológicos/metabolismo , Proteómica/métodos , Receptores CXCR3/metabolismo , Proteína del Gen 3 de Activación de Linfocitos , Células Cultivadas
2.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805281

RESUMEN

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Asunto(s)
Factores de Transcripción Forkhead , Subunidad alfa del Receptor de Interleucina-2 , ARN Largo no Codificante , Linfocitos T Reguladores , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Diferenciación Celular/genética
3.
Immunol Lett ; 263: 123-132, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37838026

RESUMEN

Transcriptional repressor, hypermethylated in cancer 1 (HIC1) participates in a range of important biological processes, such as tumor repression, immune suppression, embryonic development and epigenetic gene regulation. Further to these, we previously demonstrated that HIC1 provides a significant contribution to the function and development of regulatory T (Treg) cells. However, the mechanism by which it regulates these processes was not apparent. To address this question, we used affinity-purification mass spectrometry to characterize the HIC1 interactome in human Treg cells. Altogether 61 high-confidence interactors were identified, including IKZF3, which is a key transcription factor in the development of Treg cells. The biological processes associated with these interacting proteins include protein transport, mRNA processing, non-coding (ncRNA) transcription and RNA metabolism. The results revealed that HIC1 is part of a FOXP3-RUNX1-CBFB protein complex that regulates Treg signature genes thus improving our understanding of HIC1 function during early Treg cell differentiation.


Asunto(s)
Terapia de Inmunosupresión , Activación de Linfocitos , Femenino , Embarazo , Humanos , Transporte de Proteínas , Diferenciación Celular/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción de Tipo Kruppel/genética , Linfocitos T Reguladores
4.
Eur J Pharm Biopharm ; 142: 165-178, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31226366

RESUMEN

The present study focused upon the forced degradation behaviour of fosamprenavir (FPV), an antiretroviral drug. A total of six degradation products (DPs) were separated on a non-polar stationary phase by high performance liquid chromatography (HPLC). For the characterization, comprehensive mass fragmentation pathway of the drug was initially established using high resolution mass spectrometry (HRMS) and multi-stage tandem mass spectrometry (MSn) data. Subsequently, LC-HRMS and LC-MSn studies were carried out on the forced degraded samples containing the DPs. Five DPs were isolated and subjected to extensive 1D (1H, 13C, and DEPT-135 (distortionless enhancement by polarization)) and 2D (COSY (correlation spectroscopy), TOCSY (total correlation spectroscopy), HSQC (heteronuclear single quantum coherence) and HMBC (heteronuclear multiple bond correlation)) nuclear magnetic resonance (NMR) studies to ascertain their structures, while one degradation product was subjected to LC-NMR studies, as it could not be isolated. The collated information was helpful in characterization of all the DPs, and to delineate the degradation pathway of the drug. Additionally, physicochemical, as well as absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the drug and its DPs were evaluated in silico by ADMET Predictor™ software.


Asunto(s)
Antirretrovirales/química , Carbamatos/química , Organofosfatos/química , Sulfonamidas/química , Cromatografía Líquida de Alta Presión/métodos , Simulación por Computador , Estabilidad de Medicamentos , Furanos , Espectroscopía de Resonancia Magnética/métodos , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular/efectos de los fármacos
5.
ACS Chem Neurosci ; 9(5): 988-1000, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29384651

RESUMEN

Advanced glycation end products (AGEs) are implicated in the pathology of Alzheimer's disease (AD), as they induce neurodegeneration following interaction with the receptor for AGE (RAGE). This study aimed to establish a mechanistic link between AGE-RAGE signaling and AD pathology. AGE-induced changes in the neuro2a proteome were monitored by SWATH-MS. Western blotting and cell-based reporter assays were used to investigate AGE-RAGE regulated APP processing and tau phosphorylation in primary cortical neurons. Selected protein expression was validated in brain samples affected by AD. The AGE-RAGE axis altered proteome included increased expression of cathepsin B and asparagine endopeptidase (AEP), which mediated an increase in Aß1-42 formation and tau phosphorylation, respectively. Elevated cathepsin B, AEP, RAGE, and pTau levels were found in human AD brain, coincident with enhanced AGEs. This study demonstrates that the AGE-RAGE axis regulates Aß1-42 formation and tau phosphorylation via increased cathepsin B and AEP, providing a new molecular link between AGEs and AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Neuronas/metabolismo , Fosforilación/fisiología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/fisiología
6.
Phys Chem Chem Phys ; 18(46): 31446-31458, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27827482

RESUMEN

The cytotoxicity of the amyloid beta (Aß) peptide, implicated in the pathogenesis of Alzheimer's disease (AD), can be enhanced by its post-translational glycation, a series of non-enzymatic reactions with reducing sugars and reactive dicarbonyls. However, little is known about the underlying mechanisms that potentially enhance the cytotoxicity of the advanced glycation modified Aß. In this work, fully atomistic molecular dynamics (MD) simulations are exploited to obtain direct molecular insights into the process of early Aß self-assembly in the presence and absence of glycated lysine residues. Analyses of data exceeding cumulative timescales of 1 microsecond for each system reveal that glycation results in a stronger enthalpy of association between Aß monomers and lower conformational entropy, in addition to a sharp overall increase in the beta-sheet content. Further analyses reveal that the enhanced interactions originate, in large part, due to markedly stronger, as well as new, inter-monomer salt bridging propensities in the glycated variety. Interestingly, these conformational and energetic effects are broadly reflected in preformed protofibrillar forms of Aß small oligomers modified with glycation. Our combined results imply that glycation consolidates Aß self-assembly regardless of its point of occurrence in the pathway. They provide a basis for further mechanistic studies and therapeutic endeavors that could potentially result in novel ways of combating AGE related AD progression.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Agregado de Proteínas , Entropía , Glicosilación , Enlace de Hidrógeno , Lisina/química , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Multimerización de Proteína
7.
Clin Proteomics ; 13: 7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27030792

RESUMEN

BACKGROUND: N-1-(Deoxyfructosyl) valine (DFV) ß-hemoglobin (ß-Hb), commonly referred as HbA1c, is widely used diagnostic marker in diabetes, believed to provide glycemic status of preceding 90-120 days. However, the turnover of hemoglobin is about 120 days, the DFV-ß-Hb, an early and reversible glycation product eventually may undergo irreversible advanced glycation modifications such as carboxymethylation or carboxyethylation. Hence quantification of N-1-(carboxymethyl) valine (CMV) and N-1-(carboxyethyl) valine (CEV) peptides of ß-Hb would be useful in assessing actual glycemic status. RESULTS: Fragment ion library for synthetically glycated peptides of hemoglobin was generated by using high resolution-accurate mass spectrometry (HR/AM). Using parallel reaction monitoring, deoxyfructosylated, carboxymethylated and carboxyethylated peptides of hemoglobin were quantified in clinical samples from healthy control, pre-diabetes, diabetes and poorly controlled diabetes. For the first time, we report N-1-ß-valine undergoes carboxyethylation and mass spectrometric quantification of CMV and CEV peptides of ß-hemoglobin. Carboxymethylation was found to be the most abundant modification of N-1-ß-valine. Both CMV-ß-Hb and CEV-ß-Hb peptides showed better correlation with severity of diabetes in terms of fasting glucose, postprandial glucose and microalbuminuria. CONCLUSIONS: This study reports carboxymethylation as a predominant modification of N-1-ß-valine of Hb, and quantification of CMV-ß-Hb and CEV-ß-Hb could be useful parameter for assessing the severity of diabetes.

8.
Proteomics ; 15(2-3): 245-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25315903

RESUMEN

The receptor for advanced glycation end products (RAGE) is one of the most important proteins implicated in diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. It is a pattern recognition receptor by virtue of its ability to interact with multiple ligands, RAGE activates several signal transduction pathways through involvement of various kinases that phosphorylate their respective substrates. Only few substrates have been known to be phosphorylated in response to activation by RAGE (e.g., nuclear factor kappa B); however, it is possible that these kinases can phosphorylate multiple substrates depending upon their expression and localization, leading to altered cellular responses in different cell types and conditions. One such example is, glycogen synthase kinase 3 beta which is known to phosphorylate glycogen synthase, acts downstream to RAGE, and hyperphosphorylates microtubule-associated protein tau causing neuronal damage. Thus, it is important to understand the role of various RAGE-activated kinases and their substrates. Therefore, we have reviewed here the details of RAGE-activated kinases in response to different ligands and their respective phosphoproteome. Furthermore, we discuss the analysis of the data mined for known substrates of these kinases from the PhosphoSitePlus (http://www.phosphosite.org) database, and the role of some of the important substrates involved in cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In summary, this review provides information on RAGE-activated kinases and their phosphoproteome, which will be helpful in understanding the possible role of RAGE and its ligands in progression of diseases.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteómica/métodos , Receptores Inmunológicos/metabolismo , Transducción de Señal , Animales , Humanos , Fosforilación , Proteoma/metabolismo , Receptor para Productos Finales de Glicación Avanzada
9.
PLoS One ; 9(8): e105196, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25141174

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE), ß-secretase (BACE-1), and amyloid ß (Aß) aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Protriptilina/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antidepresivos/farmacología , Línea Celular Tumoral , Cinética , Ligandos , Ratones , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA