Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Sci Pollut Res Int ; 30(43): 96763-96781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37581734

RESUMEN

Four representative sites in the greater city of Sydney, Australia, were selected for a study of the wet-weather overflow of sanitary (separate to stormwater) sewerage systems. Water samples were collected by autosamplers from up to eight wet weather overflow events over 16 months and from companion receiving water sites. The objective was to identify the risks posed by sewage contaminants to aquatic biota in the receiving waters, to aid in prioritising management actions. Twelve organic contaminants were identified in influents across the four sites under rainfall ingress diluted conditions, with measurements showing that the highest concentrations were restricted to the anti-inflammatory acetaminophen and the diabetes medication metformin. Lesser contaminants included theobromine, ibuprofen, sucralose, and three benzotriazoles (mainly 1-H benzotriazole). An assessment of the toxicity of the identified organic chemicals indicated that none appeared to pose concerns for ecosystem health before wet-weather ingress dilution, and this was even less likely after dilution in the receiving waters. Metal concentrations were low; however, ammonia concentrations in the influent did pose a risk to ecosystem health, although receiving water dilution diminished this risk at four of the five receiving water locations studied.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Tiempo (Meteorología) , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Agua
2.
Environ Toxicol Chem ; 42(12): 2614-2629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37477462

RESUMEN

Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Animales , Modelos Lineales , Nueva Zelanda , Concentración de Iones de Hidrógeno , Australia , Compuestos Orgánicos , Zinc/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
3.
Environ Toxicol Chem ; 42(2): 303-316, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416265

RESUMEN

The toxicity of iron(III) in fresh waters has been detected at concentrations above the iron solubility limit, indicating a contribution of colloidal and particulate forms of iron(III) to the toxicity response. Current water quality guideline values for iron in fresh water are based on analytical determinations of filterable or total iron. Filtration, however, can underestimate bioavailable iron by retaining some of the colloidal fraction, and total determinations overestimate bioavailable iron measurements by recovering fractions of low bioavailability from suspended solids (e.g., iron oxides and oxyhydroxides) naturally abundant in many surface waters. Consequently, there is a need for an analytical method that permits the determination of a bioavailable iron fraction, while avoiding false-negative and false-positive results. Ideally, a measurement technique is required that can be readily applied by commercial laboratories and field sampling personnel, and integrated into established regulatory schemes. The present study investigated the performance of pH 2 and pH 4 extractions to estimate a bioavailable iron(III) fraction in synthetic water samples containing iron phases of different reactivities. The effects of aging on fresh precipitates were also studied. The total recoverable, 0.45-µm filtered, and pH 4 extractable fractions did not discriminate iron phases and age groups satisfactorily. Contrastingly, the pH 2 extraction showed specificity toward iron phases and aging (0.5-2-h interval). Extraction times above 4 h and up to 16 h equally recovered >90% of the spiked iron regardless of its age. Furthermore, <1% of the well-mineralized iron was targeted. The present study shows that a pH 2 dilute-acid extraction is a suitable candidate method to operationally define iron fractions of higher bioavailability avoiding false-negative and false-positive results. Environ Toxicol Chem 2023;42:303-316. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Compuestos Férricos , Disponibilidad Biológica , Agua Dulce , Calidad del Agua , Contaminantes Químicos del Agua/toxicidad
4.
Environ Toxicol Chem ; 42(1): 257-271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222176

RESUMEN

Sediments to be dredged as part of the installation of a harbor crossing in Sydney, Australia, contained measurable concentrations of dioxin-like compounds. To assess the suitability of these sediments for ocean disposal, a defensible sediment quality guideline value (SQGV) for dioxin-like compounds, expressed as pg toxic equivalent (TEQ)fish /g dry weight, was required. There were deemed to be too many uncertainties associated with a value derived using effects data from field studies. A similar issue was associated with values based on equilibrium partitioning from sediment to pore water, largely associated with the wide range of reported sediment:water partition coefficients. Greater certainty was associated with the use of a tissue residue approach based on equilibrium partitioning between sediment and organisms determined using tissue concentrations in fish, the most sensitive aquatic biota, and biota:sediment accumulation factors. The calculation of an appropriate SQGV used data for dioxin-like compounds in both fish and sediments from Sydney Harbor. A conservative SQGV for dioxin-like compounds of 70 pg TEQ/g dry weight was deemed to be adequately protective of biota that might be exposed to these contaminants in sediments at the ocean spoil ground. The approach is transferable to similar situations internationally. Environ Toxicol Chem 2023;42:257-271. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Dioxinas , Contaminantes Químicos del Agua , Animales , Sedimentos Geológicos/química , Peces , Agua , Australia , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
5.
Sci Total Environ ; 845: 157311, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839877

RESUMEN

Deep-sea tailings placement (DSTP) involves the oceanic discharge of tailings at depth (usually >100 m), with the intent of ultimate deposition of tailings solids on the deep-sea bed (>1000 m), well below the euphotic zone. DSTP discharges consist of a slurry of mine tailings solids (finely crushed rock) and residual process liquor containing low concentrations of metals, metalloids, flotation agents and flocculants. This slurry can potentially affect both pelagic and benthic biota inhabiting coastal waters, the continental slope and the deep-sea bed. Building on a conceptual model of DSTP exposure pathways and receptors, we developed a stressor-driven environmental risk assessment (ERA) framework using causal pathways/causal networks for each of eight pelagic and benthic impact zones. For the risk characterisation, each link in each causal pathway in each zone was scored using four levels of likelihood (not possible, possible, likely and certain) and two levels of consequence (not material, material) to give final risk rankings of low, potential, high or very high risk. Of the 246 individual causal pathways scored, 11 and 18 pathways were considered to be of very high risk and high risk respectively. These were confined to the benthic zones in the mixing zone (continental slope) and the primary and secondary deposition zones. The new risk framework was then tested using a case study of the Batu Hijau copper mine in Indonesia, the largest DSTP operation globally. The major risk of DSTP is smothering of benthic biota, even outside the predicted deposition zones. Timescales for recovery are slow and may lead to different communities than those that existed prior to tailings deposition. We make several recommendations for monitoring programs for existing, proposed and legacy DSTP operations and illustrate how georeferenced causal networks are valuable tools for ERA in DSTP.


Asunto(s)
Sedimentos Geológicos , Minería , Monitoreo del Ambiente , Metales/análisis , Océanos y Mares , Medición de Riesgo
6.
Environ Toxicol Chem ; 40(5): 1341-1352, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33465249

RESUMEN

The current Australian and New Zealand default guideline value of 3 µg Cl/L for total residual chlorine in freshwaters is largely based on acute data converted to chronic data using a default acute to chronic ratio of 10, without consideration of chlorine decomposition. Given the rapid decomposition of chlorine, initially as hypochlorite and then as chloramine, it is appropriate to consider a guideline value based on short-term (acute) toxicity rather than one based on longer-term chronic data, as has been recommended for chlorine in marine waters. The literature on the fate of chlorine in drinking water discharged to freshwaters and on the ecotoxicity of total residual chlorine has been reviewed, and on the basis of this, revised default guideline values were derived for both hypochlorite and chloramine in freshwater using a species sensitivity distribution of toxicity data. The values for 95% species protection were 7 and 9 µg Cl/L as total residual chlorine, respectively. The former would apply to any total residual chlorine-containing effluent, but in the case of drinking water where dechlorination has been undertaken, the chloramine-based default guideline value is likely to be more appropriate. Both are likely to be conservative because they were largely based on toxicity testing under continuous flow-through conditions. They will apply at the edge of the mixing zone, and the variable receiving water concentration at this point might best be determined from a time-weighted average total residual chlorine concentration. Environ Toxicol Chem 2021;40:1341-1352. © 2021 SETAC.


Asunto(s)
Cloro , Purificación del Agua , Australia , Cloruros , Agua Dulce , Pruebas de Toxicidad
7.
Environ Toxicol Chem ; 40(1): 113-126, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044759

RESUMEN

Bioavailability-based approaches have been developed for the regulation of metals in freshwaters in several countries. Empirical multiple linear regression (MLR) models have been developed for nickel that can be applied to aquatic organisms. The MLR models have been compared against the use of previously developed biotic ligand models (BLMs) for the normalization of an ecotoxicity dataset compiled for the derivation of a water quality guideline value that could be applied in Australia and New Zealand. The MLR models were developed from data for a number of specific species and were validated independently to confirm their reliability. An MLR modeling approach using different models for algae, plants, invertebrates, and vertebrates performed better than either a pooled MLR model for all taxa or the BLMs, in terms of its ability to correctly predict the results of the tests in the ecotoxicity database based on their water chemistry and a fitted species-specific sensitivity parameter. The present study demonstrates that MLR approaches can be developed and validated to predict chronic nickel toxicity to freshwater ecosystems from existing datasets. The MLR approaches provide a viable alternative to the use of BLMs for taking account of nickel bioavailability in freshwaters for regulatory purposes. Environ Toxicol Chem 2021;40:113-126. © 2020 SETAC.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Animales , Australia , Disponibilidad Biológica , Ecosistema , Agua Dulce , Nueva Zelanda , Níquel/toxicidad , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/toxicidad
8.
Environ Toxicol Chem ; 40(1): 100-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997805

RESUMEN

There has been an increased emphasis on incorporating bioavailability-based approaches into freshwater guideline value derivations for metals in the Australian and New Zealand water quality guidelines. Four bioavailability models were compared: the existing European biotic ligand model (European Union BLM) and a softwater BLM, together with 2 newly developed multiple linear regressions (MLRs)-a trophic level-specific MLR and a pooled MLR. Each of the 4 models was used to normalize a nickel ecotoxicity dataset (combined tropical and temperate data) to an index condition of pH 7.5, 6 mg Ca/L, 4 mg Mg/L, (i.e., approximately 30 mg CaCO3 /L hardness), and 0.5 mg DOC/L. The trophic level-specific MLR outperformed the other 3 models, with 79% of the predicted 10% effect concentration (EC10) values within a factor of 2 of the observed EC10 values. All 4 models gave similar normalized species sensitivity distributions and similar estimates of protective concentrations (PCs). Based on the index condition water chemistry proposed as the basis of the national guideline value, a protective concentration for 95% of species (PC95) of 3 µg Ni/L was derived. This guideline value can be adjusted up and down to account for site-specific water chemistries. Predictions of PC95 values for 20 different typical water chemistries for Australia and New Zealand varied by >40-fold, which confirmed that correction for nickel bioavailability is critical for the derivation of site-specific guideline values. Environ Toxicol Chem 2021;40:100-112. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Australia , Disponibilidad Biológica , Agua Dulce , Nueva Zelanda
9.
Environ Toxicol Chem ; 39(12): 2540-2551, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32955772

RESUMEN

The absence of chronic toxicity data for tropical marine waters has limited our ability to derive appropriate water quality guideline values for metals in tropical regions. To aid environmental management, temperate data are usually extrapolated to other climatic (e.g., tropical) regions. However, differences in climate, water chemistry, and endemic biota between temperate and tropical systems make such extrapolations uncertain. Chronic nickel (Ni) toxicity data were compiled for temperate (24 species) and tropical (16 species) marine biota and their sensitivities to Ni compared. Concentrations to cause a 10% effect for temperate biota ranged from 2.9 to 20 300 µg Ni/L, with sea urchin larval development being the most sensitive endpoint. Values for tropical data ranged from 5.5 to 3700 µg Ni/L, with copepod early-life stage development being the most sensitive test. There was little difference in temperate and tropical marine sensitivities to Ni, with 5% hazardous concentrations (95% confidence interval) of 4.4 (1.8-17), 9.6 (1.7-26), and 5.8 (2.8-15) µg Ni/L for temperate, tropical, and combined temperate and tropical species, respectively. To ensure greater taxonomic coverage and based on guidance provided in Australia and New Zealand, it is recommended that the combined data set be used as the basis to generate a jurisdiction-specific water quality guideline of 6 µg Ni/L for 95% species protection applicable to both temperate and tropical marine environments. Environ Toxicol Chem 2020;39:2540-2551. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Guías como Asunto , Níquel/toxicidad , Agua de Mar/química , Clima Tropical , Contaminantes Químicos del Agua/toxicidad , Animales , Australia , Copépodos/efectos de los fármacos , Copépodos/embriología , Ecosistema , Ecotoxicología , Nueva Zelanda , Especificidad de la Especie , Pruebas de Toxicidad , Calidad del Agua
10.
Sci Total Environ ; 737: 139725, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783822

RESUMEN

Historical contamination of sediments from industries that commenced before environmental regulations were commonplace is prevalent in many large cities. This contamination is frequently overlain and mixed with more recent urban contamination. The remediation of contaminated sites is often a very expensive exercise and the final remediation criteria often reflect a trade-off between protecting human and ecological health and the finances of those deemed responsible for the site clean-up. In this study, we describe an assessment of estuarine sediments impacted historically by contamination from a gasworks site. The major historical sediment contaminants included polycyclic aromatic hydrocarbons (PAHs) and other petroleum-related hydrocarbons (TRHs). Elevated concentrations of metals exist throughout the city region due to historical pollution and ongoing urban stormwater discharges. Equilibrium partitioning models were used to consider the influence on the bioavailability of PAHs of both natural sedimentary organic carbon and forms of black carbon (pyrogenic carbon - coal tars, charcoal). The strongest predictor of the observed sublethal toxicity to amphipod and copepod reproduction was a combination of total PAHs and metals (primarily Cu, Pb and Zn). Total PAHs was the strongest predicting variable for toxicity to organism survival. While high total PAH concentrations were attributed to the former gas works, high background concentrations of metals existed throughout much of this region of the estuary. Thus, without remediation at the estuary-scale, resuspension of the surrounding sediments by tidal currents and boat movements is predicted to re-contaminate remediated areas with sediments that may continue to cause chronic toxicity due to metals. The assessment indicated that remedial actions that remove or isolate sediments that caused toxicity to benthic organism survival would lead to significant improvements in ecosystem health, but toxicity to organism reproduction may remain at similar levels that exist throughout much of this region of the estuary due to high metal concentrations.

11.
Environ Toxicol Chem ; 39(4): 754-764, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31907965

RESUMEN

Chlorination is commonly used to control biofouling organisms, but chlorine rapidly hydrolyzes in seawater to hypochlorite, which undergoes further reaction with bromide, and then with organic matter. These reaction products, collectively termed chlorine-produced oxidants (CPOs), can be toxic to marine biota. Because the lifetime of the most toxic forms is limited to several days, appropriate guideline values need to be based on short-term (acute) toxicity tests, rather than chronic tests. Flow-through toxicity tests that provide continuous CPO exposure are the most appropriate, whereas static-renewal tests generate variable exposure and effects depending on the renewal rate. There are literature data for acute CPO toxicity from flow-through tests, together with values from 2 sensitive 15-min static tests on 30 species from 9 taxonomic groups. These values were used in a species sensitivity distribution (SSD) to derive guideline values that were protective of 99, 95, and 90% of species at 2.2, 7.2, and 13 µg CPO/L respectively. These are the first marine guideline values for chlorine to be derived using SSDs, with all other international guideline values based on the use of assessment factors applied to data for the most sensitive species. In applying these conservative guideline values in field situations, it would need to be demonstrated that concentrations of CPOs would be reduced to below the guideline value within an acceptable mixing zone through both dilution and dissociation. Environ Toxicol Chem 2020;39:754-764. © 2020 SETAC.


Asunto(s)
Cloro/toxicidad , Guías como Asunto , Ácido Hipocloroso/toxicidad , Oxidantes/toxicidad , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Biota/efectos de los fármacos , Cloro/análisis , Ácido Hipocloroso/análisis , Dosificación Letal Mediana , Medición de Riesgo , Especificidad de la Especie , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis
12.
Mar Pollut Bull ; 131(Pt A): 468-480, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29886973

RESUMEN

Metal concentrations are reported for a seagrass ecosystem receiving industrial inputs. δ13C and δ15N isotope ratios were used to establish trophic links. Copper concentrations (dry mass) ranged from <0.01 µg/g in fish species to 570 µg/g (µâ€¯= 49 ±â€¯SD = 90 µg/g) in the oyster Saccostrea glomerata. Zinc concentrations ranged from 0.6 µg/g in the seagrass Zostera capricorni to 10,800 µg/g in the mud oyster Ostrea angasi (µâ€¯= 434 ±â€¯1390 µg/g). Cadmium concentrations ranged from <0.01 µg/g in fish species to 268 µg/g in Ostrea angasi (µâ€¯= 6 ±â€¯25 µg/g). Lead concentrations ranged from <0.01 µg/g for most fish species to 20 µg/g in polychaetes (µâ€¯= 2 ±â€¯3 µg/g). Biomagnification of metals did not occur. Organisms that fed on particulate organic matter and benthic microalgae had higher metal concentrations than those that fed on detritus. Species physiology also played an important role in the bioaccumulation of metals.


Asunto(s)
Peces , Cadena Alimentaria , Metales/análisis , Metales/farmacocinética , Ostreidae , Zosteraceae , Animales , Australia , Ecosistema , Monitoreo del Ambiente , Peces/metabolismo , Lagos , Ostreidae/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/farmacocinética , Zosteraceae/metabolismo
13.
Environ Toxicol Chem ; 37(10): 2566-2574, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29923627

RESUMEN

Australian freshwaters have relatively low water hardness and different calcium (Ca) to magnesium (Mg) ratios compared with those in Europe. The hardness values of a substantial proportion of Australian freshwaters fall below the application boundary of the existing European nickel biotic ligand models (Ni BLMs) of 2 mg Ca/L. Toxicity testing was undertaken using Hydra viridissima to assess the predictive ability of the existing Ni BLM for this species in extremely soft waters. This testing revealed an increased competitive effect of Ca and Mg with Ni for binding to the biotic ligand in soft water (<10 mg CaCO3 /L) than at higher water hardness. Modifications were made to the Ni BLM by increasing the binding constants for Ca and Mg at the biotic ligand to account for softer waters encountered in Australia and the more important competitive effect of Ca and Mg on Ni toxicity. To validate the modified Ni BLM, ecotoxicity testing was performed on 5 Australian test species in 5 different natural Australian waters. Overall, no single water chemistry parameter was able to indicate the trends in toxicity to all of the test species. The modified Ni BLMs were able to predict the toxicity of Ni to the test species in the validation studies in natural waters better than the existing Ni BLMs. The present study suggests that the overarching mechanisms defining Ni bioavailability to freshwater species are globally similar and that Ni BLMs can be used in all freshwater systems with minor modifications. Environ Toxicol Chem 2018;37:2566-2574. © 2018 SETAC.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Agua Dulce , Modelos Teóricos , Níquel/toxicidad , Animales , Australia , Disponibilidad Biológica , Calcio/análisis , Hydra/efectos de los fármacos , Ligandos , Magnesio/análisis , Reproducibilidad de los Resultados , Especificidad de la Especie , Pruebas de Toxicidad , Contaminantes Químicos del Agua
14.
Environ Toxicol Chem ; 37(8): 2029-2063, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29633323

RESUMEN

The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Ecotoxicología , Nanoestructuras/toxicidad , Disponibilidad Biológica , Ecosistema , Exposición a Riesgos Ambientales , Oxidación-Reducción
15.
Environ Toxicol Chem ; 37(5): 1340-1348, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29314166

RESUMEN

The unique physical and chemical properties of graphene-based nanomaterials (GNMs) have inspired a diverse range of scientific and industrial applications. The market value of GNMs is predicted to reach $US 1.3 billion by 2023. Common to many nanomaterials, an important and unresolved question is the environmental consequences of the increases in GNMs use. The current deficiencies in studies reporting ecotoxicology data for GNMs include differences in analytical methodologies for quantification, no standardized test guidelines, differences in morphology of GNMs, the lack of Chemical Abstract Service numbers, and the quality of the reported data. The assessment of potential adverse effects on aquatic organisms typically relies on guideline values based on species sensitivity distributions (SSDs) of toxicity data. We present preliminary water quality guideline values for graphene oxide NMs in freshwaters. Data include 10 species from 7 phyla (bacteria and fungi were not included). The most sensitive organism was found to be the freshwater shrimp Palaemon pandaliformis. The derived guideline values for 99, 95, 90, and 80% species protection were 350, 600, 830, and 1300 µg/L, respectively. These results will contribute to the regulatory derivations of future water quality guideline values for graphene-based NMs. Environ Toxicol Chem 2018;37:1340-1348. © 2018 SETAC.


Asunto(s)
Ecotoxicología , Agua Dulce/química , Grafito/toxicidad , Guías como Asunto , Nanoestructuras/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Crustáceos/efectos de los fármacos , Especificidad de la Especie , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
19.
Environ Toxicol Chem ; 35(10): 2395-2396, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27717066
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...