Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(11): 113702, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501355

RESUMEN

High-resolution, high-sensitivity X-ray imaging is a real challenge in high-energy density plasma experiments. We present an improved design of the Fresnel ultra high-resolution imager instrument. Using an Ultra-High-Intensity (UHI) laser to generate hot and dense plasma in a small volume of an Al-Ti mixed target provides simultaneous imaging of both Al and Ti X-ray emission. Specifically, the Al Heß (or Lyß) and the Ti Heα lines are imaged with a resolution of (2.7 ± 0.3) µm and (5.5 ± 0.3) µm, respectively. It features two transmission Fresnel phase zone plates fabricated on the same substrate, each associated with a multilayer mirror for spectral selection. Their spatial resolution has been measured on the PTB synchrotron radiation facility laboratory at BESSY II and on the EQUINOX laser facility. Results obtained on an UHI experiment highlight the difference of emission zone sizes between Al and Ti lines and the versatility of this instrument.

2.
Phys Rev E ; 95(6-1): 063205, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709273

RESUMEN

Multimegabar laser-driven shock waves are unique tools for studying matter under extreme conditions. Accurate characterization of shocked matter is for instance necessary for measurements of equation of state data or opacities. This paper reports experiments performed at the LULI facility on the diagnosis of shock waves, using x-ray-absorption radiography. Radiographs are analyzed using standard Abel inversion. In addition, synthetic radiographs, which also take into account the finite size of the x-ray source, are generated using density maps produced by hydrodynamic simulations. Reported data refer to both plane cylindrical targets and hemispherical targets. Evolution and deformation of the shock front could be followed using hydrodynamic simulations.

3.
Phys Rev Lett ; 118(20): 205001, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581770

RESUMEN

Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

4.
Rev Sci Instrum ; 88(1): 013701, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147634

RESUMEN

High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heß, a Fresnel-lens-based X-ray imager has been developed. It features a 846 µm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 µm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10-6 sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

5.
Phys Rev Lett ; 117(1): 015002, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419574

RESUMEN

This Letter investigates experimentally the backward stimulated Raman scattering (SRS) of two copropagating, 1-µm wavelength, 1.5-ps duration laser pulses focused side by side, but not simultaneously, in a preformed underdense plasma. When the two lasers do not interact, one of the pulses (so-called strong) yields a large SRS reflectivity, while the other weak pulse is essentially ineffective as regards SRS. By contrast, the weak pulse shows significant SRS activity if it is launched in the plasma slightly after the strong one, and for time delays as large as about 15 ps. For crossed polarizations and a lateral distance of 80-90 µm, the time delay has to be larger than 3-4 ps for the weak pulse to be active, while it has just to be positive when the polarizations are parallel. The experimental results are discussed with the help of large-scale particle-in-cell simulations.

7.
Phys Rev E ; 93: 043209, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27176420

RESUMEN

Backward stimulated Raman and Brillouin scattering (SRS and SBS) are experimentally investigated by using two successive 1-µm, 1.5-ps FWHM laser pulses. The collinear pulses, separated by 3 or 6 ps and of moderate laser intensities (∼2×10^{16}Wcm^{-2}), are fired into a preionized He plasma of density ∼2.5-6×10^{19}cm^{-3}. The electron plasma waves and ion acoustic waves, respectively driven by SRS and SBS, are analyzed through space- and time-resolved Thomson scattering. Depending on the laser and plasma parameters, we observe the effect of the first pulse on the time-resolved SRS and SBS signals of the second pulse. The measurements are found to qualitatively agree with the results of a large-scale particle-in-cell simulation.

8.
Sci Rep ; 6: 21495, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923471

RESUMEN

The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5-10 eV and densities around 10(21) cm(-3) are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations.

9.
Rev Sci Instrum ; 84(8): 083505, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24007063

RESUMEN

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

10.
Phys Rev Lett ; 109(1): 015001, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23031109

RESUMEN

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.

11.
Phys Rev Lett ; 108(19): 195002, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-23003050

RESUMEN

The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion.

12.
Phys Rev Lett ; 109(25): 255002, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23368474

RESUMEN

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/µm and 0.8 keV/µm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/µm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

13.
Phys Rev Lett ; 107(6): 065004, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902333

RESUMEN

Fast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven electrical resistivity gradients induce strong magnetic fields able to guide the electrons. The good agreement with measured beam sizes provides the first experimental evidence for fast-electron magnetic collimation in laser-compressed matter.

14.
Phys Rev Lett ; 104(8): 085001, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366940

RESUMEN

Thin, mass-limited targets composed of V/Cu/Al layers with diameters ranging from 50 to 300 microm have been isochorically heated by a 300 fs laser pulse delivering up to 10 J at 2x10{19} W/cm{2} irradiance. Detailed spectral analysis of the Cu x-ray emission indicates that the highest temperatures, of the order of 100 eV, have been reached when irradiating the smallest targets with a high-contrast, frequency-doubled pulse despite a reduced laser energy. Collisional particle-in-cell simulations confirm the detrimental influence of the preformed plasma on the bulk target heating.

15.
Phys Rev Lett ; 102(18): 185003, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19518880

RESUMEN

We report on highly time- and space-resolved measurements of the evolution of electron plasma waves driven by stimulated Raman scattering of a picosecond, single laser speckle propagating through a preformed underdense plasma. Two-dimensional Thomson scatter spectra indicate that the dominant waves have significant transverse components. These results are supported by particle-in-cell simulations which pinpoint the dominant role of the wave front bowing and of secondary nonlinear electrostatic instabilities in the evolution of the plasma waves.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 2): 036408, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19392065

RESUMEN

We report experiments demonstrating enhanced coupling efficiencies of high-contrast laser irradiation to nanofabricated conical targets. Peak temperatures near 200 eV are observed with modest laser energy (10 J), revealing similar hot-electron localization and material heating to reduced mass targets (RMTs), despite having a significantly larger mass. Collisional particle-in-cell simulations attribute the enhancement to self-generated resistive (approximately 10 MG) magnetic fields forming within the curvature of the cone wall, which confine energetic electrons to heat a reduced volume at the tip. This represents a different electron confinement mechanism (magnetic, as opposed to electrostatic sheath confinement in RMTs) controllable by target shape.

17.
Phys Rev Lett ; 97(1): 015001, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16907380

RESUMEN

The excitation and the relaxation of the plasma waves and ion acoustic waves (IAW), respectively, driven by stimulated Raman (SRS) and Brillouin (SBS) backscatterings have been experimentally investigated with short-pulse lasers. The spectra have been obtained with a 0.3 ps time resolution. It is shown that SRS develops before SBS and suddenly decays around the peak of the pump, as the IAW reaches saturation. On this short time scale, electron kinetic effects play a major role for SRS saturation, contrary to ion dynamics. These results are supported by particle-in-cell simulations.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046402, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16711934

RESUMEN

We present experimental results on fast-electron energy deposition into solid targets in ultrahigh intensity laser-matter interaction. X-ray K alpha emission spectroscopy with absolute photon counting served to diagnose fast-electron propagation in multilayered targets. Target heating was measured from ionization-shifted K alpha emission. Data show a 200 microm fast-electron range in solid Al. The relative intensities of spectrally shifted Al K alpha lines imply a mean temperature of a few tens of eV up to a 100 microm depth. Experimental results suggest refluxing of the electron beam at target rear side. They were compared with the predictions of both a collisional Monte Carlo and a collisional-electromagnetic, particle-fluid transport code. The validity of the code modeling of heating in such highly transient conditions is discussed.

19.
Phys Rev Lett ; 94(5): 055004, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15783656

RESUMEN

We study the propagation of fast electrons in a gas at different densities. A large relativistic electron current is produced by focusing a short-pulse ultrahigh-intensity laser on a metallic target. It then propagates in a gas jet placed behind the foil. Shadowgraphy in the gas shows an electron cloud moving at sub-relativistic average velocities. The experiment shows (i) the essential role of the density of background material for allowing propagation of fast electrons, (ii) the importance of the ionization phase which produces free electrons available for the return current, and (iii) the effect of electrostatic fields on fast-electron propagation.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 055402, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15600682

RESUMEN

We report one of the first measurements of induced heating due to the transport of a fast electron beam generated by an ultrashort pulse laser interaction with solid targets. Rear-side optical reflectivity and emissivity have been used as diagnostics for the size and temperature of the heated zone. A narrow spot has been observed of the order of the laser focus size. Values up to approximately 10 eV at the target back surface were inferred from the experimental data and compared with the predictions of a hybrid collisional-electromagnetic transport simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...