Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562728

RESUMEN

How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and computer vision pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.

2.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36522481

RESUMEN

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Amígdala del Cerebelo/fisiología , Tálamo , Complejo Nuclear Basolateral/fisiología , Condicionamiento Clásico/fisiología , Nivel de Alerta
3.
Nature ; 608(7923): 586-592, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859170

RESUMEN

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Asunto(s)
Complejo Nuclear Basolateral , Aprendizaje , Vías Nerviosas , Neurotensina , Castigo , Recompensa , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/fisiología , Calcio/metabolismo , Señales (Psicología) , Plasticidad Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología
4.
Nature ; 603(7902): 667-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296862

RESUMEN

Most social species self-organize into dominance hierarchies1,2, which decreases aggression and conserves energy3,4, but it is not clear how individuals know their social rank. We have only begun to learn how the brain represents social rank5-9 and guides behaviour on the basis of this representation. The medial prefrontal cortex (mPFC) is involved in social dominance in rodents7,8 and humans10,11. Yet, precisely how the mPFC encodes relative social rank and which circuits mediate this computation is not known. We developed a social competition assay in which mice compete for rewards, as well as a computer vision tool (AlphaTracker) to track multiple, unmarked animals. A hidden Markov model combined with generalized linear models was able to decode social competition behaviour from mPFC ensemble activity. Population dynamics in the mPFC predicted social rank and competitive success. Finally, we demonstrate that mPFC cells that project to the lateral hypothalamus promote dominance behaviour during reward competition. Thus, we reveal a cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of social dominance.


Asunto(s)
Hipotálamo , Corteza Prefrontal , Animales , Área Hipotalámica Lateral , Ratones , Recompensa , Conducta Social
5.
Sci Rep ; 12(1): 265, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997164

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) of the musculoskeletal system has various applications, including visualization of bone tumors. However, DWI acquired with echo-planar imaging is susceptible to distortions due to static magnetic field inhomogeneities. This study aimed to estimate spatial displacements of bone and to examine whether distortion corrected DWI images more accurately reflect underlying anatomy. Whole-body MRI data from 127 prostate cancer patients were analyzed. The reverse polarity gradient (RPG) technique was applied to DWI data to estimate voxel-level distortions and to produce a distortion corrected DWI dataset. First, an anatomic landmark analysis was conducted, in which corresponding vertebral landmarks on DWI and anatomic T2-weighted images were annotated. Changes in distance between DWI- and T2-defined landmarks (i.e., changes in error) after distortion correction were calculated. In secondary analyses, distortion estimates from RPG were used to assess spatial displacements of bone metastases. Lastly, changes in mutual information between DWI and T2-weighted images of bone metastases after distortion correction were calculated. Distortion correction reduced anatomic error of vertebral DWI up to 29 mm. Error reductions were consistent across subjects (Wilcoxon signed-rank p < 10-20). On average (± SD), participants' largest error reduction was 11.8 mm (± 3.6). Mean (95% CI) displacement of bone lesions was 6.0 mm (95% CI 5.0-7.2); maximum displacement was 17.1 mm. Corrected diffusion images were more similar to structural MRI, as evidenced by consistent increases in mutual information (Wilcoxon signed-rank p < 10-12). These findings support the use of distortion correction techniques to improve localization of bone on DWI.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata/patología , Imagen de Cuerpo Entero , Artefactos , Neoplasias Óseas/secundario , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados
6.
J Magn Reson Imaging ; 54(3): 975-984, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33786915

RESUMEN

BACKGROUND: Diffusion magnetic resonance imaging (MRI) is integral to detection of prostate cancer (PCa), but conventional apparent diffusion coefficient (ADC) cannot capture the complexity of prostate tissues and tends to yield noisy images that do not distinctly highlight cancer. A four-compartment restriction spectrum imaging (RSI4 ) model was recently found to optimally characterize pelvic diffusion signals, and the model coefficient for the slowest diffusion compartment, RSI4 -C1 , yielded greatest tumor conspicuity. PURPOSE: To evaluate the slowest diffusion compartment of a four-compartment spectrum imaging model (RSI4 -C1 ) as a quantitative voxel-level classifier of PCa. STUDY TYPE: Retrospective. SUBJECTS: Forty-six men who underwent an extended MRI acquisition protocol for suspected PCa. Twenty-three men had benign prostates, and the other 23 men had PCa. FIELD STRENGTH/SEQUENCE: A 3 T, multishell diffusion-weighted and axial T2-weighted sequences. ASSESSMENT: High-confidence cancer voxels were delineated by expert consensus, using imaging data and biopsy results. The entire prostate was considered benign in patients with no detectable cancer. Diffusion images were used to calculate RSI4 -C1 and conventional ADC. Classifier images were also generated. STATISTICAL TESTS: Voxel-level discrimination of PCa from benign prostate tissue was assessed via receiver operating characteristic (ROC) curves generated by bootstrapping with patient-level case resampling. RSI4 -C1 was compared to conventional ADC for two metrics: area under the ROC curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90 ). Statistical significance was assessed using bootstrap difference with two-sided α = 0.05. RESULTS: RSI4 -C1 outperformed conventional ADC, with greater AUC (mean 0.977 [95% CI: 0.951-0.991] vs. 0.922 [0.878-0.948]) and lower FPR90 (0.032 [0.009-0.082] vs. 0.201 [0.132-0.290]). These improvements were statistically significant (P < 0.05). DATA CONCLUSION: RSI4 -C1 yielded a quantitative, voxel-level classifier of PCa that was superior to conventional ADC. RSI classifier images with a low false-positive rate might improve PCa detection and facilitate clinical applications like targeted biopsy and treatment planning. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Curva ROC , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...