Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; : 189146, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955315

RESUMEN

Glioblastoma (GBM), an extremely aggressive and prevalent malignant brain tumor, remains a challenge to treat. Despite a multimodality treatment approach, GBM recurrence remains inevitable, particularly with the emergence of temozolomide (TMZ) resistance and limited treatment options. Surprisingly, previous studies show that a history of allergies, atopy, or asthma is inversely associated with GBM risk. Further, the electronic medical record at the University Hospital of Lausanne showed that the GBM patients taking antihistamine during treatment had better survival. Histamine is an essential neurotransmitter in the brain and plays a significant role in regulating sleep, hormonal balance, and cognitive functions. Elevated levels of histamine and increased histamine receptor expression have been found in different tumors and their microenvironments, including GBM. High histamine 1 receptor (HRH1) expression has been shown to be inversely related to overall and progression-free survival in GBM patients, further emphasizing the role of histamine in disease progression. This review aims to provide insights into the challenges of GBM treatment, the role of histamine in GBM progression, and the rationale for considering antihistamines as targeted therapy. The review concludes by encouraging further investigation into antihistamine mechanisms and their impact on the tumor microenvironment.

2.
Cancer Lett ; : 217097, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964729

RESUMEN

Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.

3.
Exp Mol Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825648

RESUMEN

Non-small cell lung carcinoma (NSCLC) exhibits a heightened propensity for brain metastasis, posing a significant clinical challenge. Mucin 5ac (MUC5AC) plays a pivotal role in the development of lung adenocarcinoma (LUAD); however, its role in causing brain metastases remains unknown. In this study, we aimed to investigate the contribution of MUC5AC to brain metastasis in patients with LUAD utilizing various brain metastasis models. Our findings revealed a substantial increase in the MUC5AC level in LUAD brain metastases (LUAD-BrM) samples and brain-tropic cell lines compared to primary samples or parental control cell lines. Intriguingly, depletion of MUC5AC in brain-tropic cells led to significant reductions in intracranial metastasis and tumor growth, and improved survival following intracardiac injection, in contrast to the observations in the control groups. Proteomic analysis revealed that mechanistically, MUC5AC depletion resulted in decreased expression of metastasis-associated molecules. There were increases in epithelial-to-mesenchymal transition, tumor invasiveness, and metastasis phenotypes in tumors with high MUC5AC expression. Furthermore, immunoprecipitation and proteomic analysis revealed a novel interaction of MUC5AC with Annexin A2 (ANXA2), which activated downstream matrix metalloproteases and facilitated extracellular matrix degradation to promote metastasis. Disrupting MUC5AC-ANXA2 signaling with a peptide inhibitor effectively abrogated the metastatic process. Additionally, treatment of tumor cells with an astrocyte-conditioned medium or the chemokine CCL2 resulted in upregulation of MUC5AC expression and enhanced brain colonization. In summary, our study demonstrates that the MUC5AC/ANXA2 signaling axis promotes brain metastasis, suggesting a potential therapeutic paradigm for LUAD patients with high MUC5AC expression.

4.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826212

RESUMEN

A blood test that enables surveillance for early-stage pancreatic ductal adenocarcinoma (PDAC) is an urgent need. Independent laboratories have reported PDAC biomarkers that could improve biomarker performance over CA19-9 alone, but the performance of the previously reported biomarkers in combination is not known. Therefore, we conducted a coordinated case/control study across multiple laboratories using common sets of blinded training and validation samples (132 and 295 plasma samples, respectively) from PDAC patients and non-PDAC control subjects representing conditions under which surveillance occurs. We analyzed the training set to identify candidate biomarker combination panels using biomarkers across laboratories, and we applied the fixed panels to the validation set. The panels identified in the training set, CA19-9 with CA199.STRA, LRG1, TIMP-1, TGM2, THSP2, ANG, and MUC16.STRA, achieved consistent performance in the validation set. The panel of CA19-9 with the glycan biomarker CA199.STRA improved sensitivity from 0.44 with 0.98 specificity for CA19-9 alone to 0.71 with 0.98 specificity (p < 0.001, 1000-fold bootstrap). Similarly, CA19-9 combined with the protein biomarker LRG1 and CA199.STRA improved specificity from 0.16 with 0.94 sensitivity for CA19-9 to 0.65 with 0.89 sensitivity (p < 0.001, 1000-fold bootstrap). We further validated significantly improved performance using biomarker panels that did not include CA19-9. This study establishes the effectiveness of a coordinated study of previously discovered biomarkers and identified panels of those biomarkers that significantly increased the sensitivity and specificity of early-stage PDAC detection in a rigorous validation trial.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38902476

RESUMEN

Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.

6.
Cancer Lett ; 593: 216954, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735382

RESUMEN

Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Neoplasias de la Próstata , Animales , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Masculino , Ratones , Humanos , Genómica/métodos , Ingeniería Genética
7.
Gastroenterology ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759843

RESUMEN

Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.

8.
Cancer Lett ; 590: 216876, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38609002

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/terapia , Glioma Pontino Intrínseco Difuso/patología , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Pronóstico , Microambiente Tumoral , Terapia Molecular Dirigida/métodos
9.
Cytokine Growth Factor Rev ; 77: 56-66, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514303

RESUMEN

G protein-coupled receptors (GPCRs) are well-studied and the most traceable cell surface receptors for drug discovery. One of the intriguing members of this family is G protein-coupled receptors 35 (GPR35), which belongs to the class A rhodopsin-like family of GPCRs identified over two decades ago. GPR35 presents interesting features such as ubiquitous expression and distinct isoforms. Moreover, functional and genome-wide association studies on its widespread expression have linked GPR35 with pathophysiological disease progression. Various pieces of evidence have been accumulated regarding the independent or endogenous ligand-dependent role of GPR35 in cancer progression and metastasis. In the current scenario, the relationship of this versatile receptor and its putative endogenous ligands for the activation of oncogenic signal transduction pathways at the cellular level is an active area of research. These intriguing features offered by GPR35 make it an oncological target, justifying its uniqueness at the physiological and pathophysiological levels concerning other GPCRs. For pharmacologically targeting receptor-induced signaling, few potential competitive antagonists have been discovered that offer high selectivity at a human level. In addition to its fascinating features, targeting GPR35 at rodent and human orthologue levels is distinct, thus contributing to the sub-species selectivity. Strategies to modulate these issues will help us understand and truly target GPR35 at the therapeutic level. In this article, we have provided prospects on each topic mentioned above and suggestions to overcome the challenges. This review discusses the molecular mechanism and signal transduction pathways activated by endogenous ligands or spontaneous auto-activation of GPR35 that contributes towards disease progression. Furthermore, we have highlighted the GPR35 structure, ubiquitous expression, its role in immunomodulation, and at the pathophysiological level, especially in cancer, indicating its status as a versatile receptor. Subsequently, we discussed the various proposed ligands and their mechanism of interaction with GPR35. Additionally, we have summarized the GPR35 antagonist that provides insights into the opportunities for therapeutically targeting this receptor.


Asunto(s)
Neoplasias , Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neoplasias/inmunología , Animales , Oncogenes , Inmunomodulación
10.
NPJ Precis Oncol ; 8(1): 66, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454151

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to limited therapeutic options and expensive/burdensome drug discovery processes. Utilizing genomic-data-driven Connectivity Mapping (CMAP) to identify a drug closer to real-world PC targeting may improve pancreatic cancer (PC) patient outcomes. Initially, we mapped CMAP data to gene expression from 106 PC patients, identifying nine negatively connected drugs. These drugs were further narrowed down using a similar analysis for PC cell lines, human tumoroids, and patient-derived xenografts datasets, where ISOX emerged as the most potent agent to target PC. We used human and mouse syngeneic PC cells, human and mouse tumoroids, and in vivo mice to assess the ability of ISOX alone and in combination with 5FU to inhibit tumor growth. Global transcriptomic and pathway analysis of the ISOX-LINCS signature identified HDAC 6/cMyc as the target axis for ISOX. Specifically, we discovered that genetic and pharmacological targeting of HDAC 6 affected non-histone protein cMyc acetylation, leading to cMyc instability, thereby disrupting PC growth and metastasis by affecting cancer stemness. Finally, KrasG12D harboring tumoroids and mice responded effectively against ISOX and 5FU treatment by enhancing survival and controlling metastasis incidence. Overall, our data validate ISOX as a new drug to treat advanced PC patients without toxicity to normal cells. Our study supports the clinical utility of ISOX along with 5FU in future PC clinical trials.

11.
Heliyon ; 10(5): e27496, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486750

RESUMEN

Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.

12.
Biomolecules ; 14(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38540693

RESUMEN

Claudins (CLDN1-CLDN24) are a family of tight junction proteins whose dysregulation has been implicated in tumorigeneses of many cancer types. In colorectal cancer (CRC), CLDN1, CLDN2, CLDN4, and CLDN18 have been shown to either be upregulated or aberrantly expressed. In the normal colon, CLDN1 and CLDN3-7 are expressed. Although a few claudins, such as CLDN6 and CLDN7, are expressed in CRC their levels are reduced compared to the normal colon. The present review outlines the expression profiles of claudin proteins in CRC and those that are potential biomarkers for prognostication.


Asunto(s)
Claudinas , Neoplasias Colorrectales , Humanos , Claudina-1/genética , Claudinas/genética , Proteínas de Uniones Estrechas , Neoplasias Colorrectales/genética
13.
Cancer Lett ; 587: 216704, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360138

RESUMEN

Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.


Asunto(s)
Neoplasias Colorrectales , Ratones , Humanos , Animales , Neoplasias Colorrectales/patología , Calidad de Vida , Modelos Animales de Enfermedad , Microambiente Tumoral
14.
Sci Rep ; 14(1): 4404, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388663

RESUMEN

Prostate cancer (PCa) progression leads to bone modulation in approximately 70% of affected men. A nutraceutical, namely, α-lipoic acid (α-LA), is known for its potent anti-cancer properties towards various cancers and has been implicated in treating and promoting bone health. Our study aimed to explore the molecular mechanism behind the role of α-LA as therapeutics in preventing PCa and its associated bone modulation. Notably, α-LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose-dependent manner. In addition, α-LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF-1α expression, which started the downstream molecular cascade and activated JNK/caspase-3 signaling pathway. Flow cytometry data revealed the arrest of the cell cycle in the S-phase, which has led to apoptosis of PCa cells. Furthermore, the results of ALP (Alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) staining signifies that α-LA supplementation diminished the PCa-mediated differentiation of osteoblasts and osteoclasts, respectively, in the MC3T3-E1 and bone marrow macrophages (BMMs) cells. In summary, α-LA supplementation enhanced cellular apoptosis via increased ROS levels, HIF-1α expression, and JNK/caspase-3 signaling pathway in advanced human PCa cell lines. Also, the treatment of α-LA improved bone health by reducing PCa-mediated bone cell modulation.


Asunto(s)
Neoplasias de la Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacología , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Osteoblastos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
15.
Int J Biol Macromol ; 260(Pt 1): 129318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232866

RESUMEN

Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.


Asunto(s)
Neoplasias , Polisacáridos , Humanos , Polisacáridos/metabolismo , Antígeno Sialil Lewis X/metabolismo , Glicosilación
16.
Cancer Lett ; 582: 216592, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092145

RESUMEN

Despite therapeutic advances, overall survival in glioblastoma is dismal. To optimize progress, a more detailed understanding of glioma's molecular, cellular, and intercellular pathophysiology is needed. Recent investigation has revealed a vital role for exosomes in inter-cellular signaling, tumor cell support, and regulation of the tumor microenvironment. Exosomes carry miRNAs, lncRNAs, mRNAs, proteins, immune regulatory molecules, nucleic acids, and lipids; however, the composition of exosome cargo is variable depending on the cell of origin. Specific exosomal miRNA contents such as miR-21, miR-301a, miR-151a, miR-148a, and miR-5096 are altered in high-grade glioma. Unique proteomic, genomic, and miRNA signatures of tumor exosomes have been associated with disease pathobiology, temozolomide resistance, immunosuppression, and tumor proliferation. Exosomes hold promise for tissue diagnostic glioma diagnosis and monitoring response to therapy. This review summarizes the current understanding of exosomes, their crucial role in glioma pathology, and future directions for their use in diagnosis and treatment. METHODS: The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of 1981-2023, using the search string "Exosome", "Extracellular vesicles", "Glioma", "Exosomes in glioma".


Asunto(s)
Exosomas , Glioblastoma , Glioma , MicroARNs , Humanos , Exosomas/metabolismo , Proteómica , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , MicroARNs/genética , Glioblastoma/patología , Línea Celular Tumoral , Microambiente Tumoral
17.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189029, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008263

RESUMEN

Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFß, Wnt/ß-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.


Asunto(s)
Proteínas de la Matriz Extracelular , Neoplasias , Humanos , Animales , Ratones , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta
18.
Semin Cell Dev Biol ; 154(Pt C): 261-274, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379848

RESUMEN

Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Epigénesis Genética , Enfermedades Neuroinflamatorias , Neoplasias Encefálicas/genética , Inflamación/genética , Microambiente Tumoral/genética
19.
Gastroenterology ; 166(5): 842-858.e5, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154529

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS: Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS: A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS: Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.


Asunto(s)
Células Acinares , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Transdiferenciación Celular , Laminina , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Células Acinares/metabolismo , Células Acinares/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Metaplasia/patología , Metaplasia/metabolismo , Organoides/metabolismo , Organoides/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Transducción de Señal , Microambiente Tumoral
20.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831779

RESUMEN

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirales , beta Catenina/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Resistencia a Antineoplásicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...