Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Blood Adv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38759096

RESUMEN

Among the most common genetic alterations in the myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease. Here we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct co-mutation pattern, and a lack of the favorable survival seen with other SF3B1 mutations. Moreover, compared to other hotspot SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data have implications for our understanding of the functional diversity of spliceosome mutations, as well as the pathobiology, classification, prognosis, and management of SF3B1-mutant MDS.

3.
Cell Stem Cell ; 30(9): 1262-1281.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37582363

RESUMEN

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.


Asunto(s)
Síndromes Mielodisplásicos , Sitios de Empalme de ARN , Humanos , Multiómica , Empalme del ARN/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Mutación/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
4.
Cell Stem Cell ; 30(6): 781-799.e9, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267914

RESUMEN

Somatic mutations commonly occur in hematopoietic stem cells (HSCs). Some mutant clones outgrow through clonal hematopoiesis (CH) and produce mutated immune progenies shaping host immunity. Individuals with CH are asymptomatic but have an increased risk of developing leukemia, cardiovascular and pulmonary inflammatory diseases, and severe infections. Using genetic engineering of human HSCs (hHSCs) and transplantation in immunodeficient mice, we describe how a commonly mutated gene in CH, TET2, affects human neutrophil development and function. TET2 loss in hHSCs produce a distinct neutrophil heterogeneity in bone marrow and peripheral tissues by increasing the repopulating capacity of neutrophil progenitors and giving rise to low-granule neutrophils. Human neutrophils that inherited TET2 mutations mount exacerbated inflammatory responses and have more condensed chromatin, which correlates with compact neutrophil extracellular trap (NET) production. We expose here physiological abnormalities that may inform future strategies to detect TET2-CH and prevent NET-mediated pathologies associated with CH.


Asunto(s)
Dioxigenasas , Neutrófilos , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas , Células Madre Hematopoyéticas/fisiología , Médula Ósea , Hematopoyesis/genética , Mutación , Proteínas de Unión al ADN/genética , Dioxigenasas/genética
5.
Br J Haematol ; 201(2): 302-307, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36746431

RESUMEN

Leukaemic stem cell (LSC) gene expression has recently been linked to prognosis in patients with acute myeloid leukaemia (17-gene LSC score, LSC-17) and myelodysplastic syndromes. Although chronic myelomonocytic leukaemia (CMML) is regarded as a stem cell disorder, the clinical and biological impact of LSCs on CMML patients remains elusive. Making use of multiple independent validation cohorts, we here describe a concise three-gene expression signature (LSC-3, derived from the LSC-17 score) as an independent and robust prognostic factor for leukaemia-free and overall survival in CMML. We propose that LSC-3 could be used to supplement existing risk stratification systems, to improve prognostic performance and guide management decisions.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/genética , Pronóstico , Células Madre
6.
J Immunol ; 210(5): 580-589, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661356

RESUMEN

Aging causes chronic low-grade inflammation known as inflamm-aging. It is a risk factor for several chronic disorders, including chronic myelomonocytic leukemia (CMML), a hematological malignancy that is most prevalent in older people. Recent studies suggest a critical role for the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in inflamm-aging. However, the mechanisms involved in NLRP3 activation in aging and its involvement in CMML progression are not fully understood. In this study, we report that aging increases IL-1ß production upon NLRP3 activation in human CD14+ monocytes. Interestingly, we found that the TLR1/2 agonist Pam3CSK4 directly activates the NLRP3 inflammasome in monocytes from older but not from younger healthy donors. Furthermore, we observed a dichotomous response to NLRP3 inflammasome activation in monocytes from a small cohort of CMML patients, and some patients produced high levels of IL-1ß and some patients produced low levels of IL-1ß compared with older healthy donors. Intriguingly, CMML patients with heightened NLRP3 activation showed increased treatment dependency and disease severity. Collectively, our results suggest that aging causes increased sensitivity to NLRP3 inflammasome activation at a cellular level, which may explain increased inflammation and immune dysregulation in older individuals. Furthermore, NLRP3 inflammasome activation was dysregulated in a small cohort of CMML patients and was positively correlated with disease severity.


Asunto(s)
Inflamasomas , Leucemia Mielomonocítica Crónica , Humanos , Anciano , Proteína con Dominio Pirina 3 de la Familia NLR , Envejecimiento , Inflamación , Gravedad del Paciente
8.
Front Cell Dev Biol ; 9: 635189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777944

RESUMEN

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in "inflamm-aging" and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.

10.
EBioMedicine ; 58: 102904, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32763828

RESUMEN

BACKGROUND: Chronic myelomonocytic leukaemia (CMML) is a clinically heterogeneous stem cell malignancy with overlapping features of myelodysplasia and myeloproliferation. Over 90% of patients carry mutations in epigenetic and/or splicing genes, typically detectable in the Lin-CD34+CD38- immunophenotypic stem cell compartment in which the leukaemia-initiating cells reside. Transcriptional dysregulation at the stem cell level is likely fundamental to disease onset and progression. METHODS: We performed single-cell RNA sequencing on 6826 Lin-CD34+CD38-stem cells from CMML patients and healthy controls using the droplet-based, ultra-high-throughput 10x platform. FINDINGS: We found substantial inter- and intra-patient heterogeneity, with CMML stem cells displaying distinctive transcriptional programs. Compared with normal controls, CMML stem cells exhibited transcriptomes characterized by increased expression of myeloid-lineage and cell cycle genes, and lower expression of genes selectively expressed by normal haematopoietic stem cells. Neutrophil-primed progenitor genes and a MYC transcription factor regulome were prominent in stem cells from CMML-1 patients, whereas CMML-2 stem cells exhibited strong expression of interferon-regulatory factor regulomes, including those associated with IRF1, IRF7 and IRF8. CMML-1 and CMML-2 stem cells (stages distinguished by proportion of downstream blasts and promonocytes) differed substantially in both transcriptome and pseudotime, indicating fundamentally different biology underpinning these disease states. Gene expression and pathway analyses highlighted potentially tractable therapeutic vulnerabilities for downstream investigation. Importantly, CMML patients harboured variably-sized subpopulations of transcriptionally normal stem cells, indicating a potential reservoir to restore functional haematopoiesis. INTERPRETATION: Our findings provide novel insights into the CMML stem cell compartment, revealing an unexpected degree of heterogeneity and demonstrating that CMML stem cell transcriptomes anticipate disease morphology, and therefore outcome. FUNDING: Project funding was supported by Oglesby Charitable Trust, Cancer Research UK, Blood Cancer UK, and UK Medical Research Council.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Leucemia Mielomonocítica Crónica/genética , Células Madre Neoplásicas/inmunología , Adulto , Estudios de Casos y Controles , Femenino , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Humanos , Inmunofenotipificación , Leucemia Mielomonocítica Crónica/inmunología , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/química , Análisis de Secuencia de ARN , Análisis de la Célula Individual
11.
Nature ; 574(7777): 273-277, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578525

RESUMEN

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.


Asunto(s)
Empalme Alternativo/genética , Carcinogénesis/genética , Epigénesis Genética , Leucemia Mieloide Aguda/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Mutación/genética , ARN Polimerasa II/metabolismo , Factores de Empalme Serina-Arginina/genética , Transcriptoma
12.
Br J Haematol ; 182(3): 373-383, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29797327

RESUMEN

Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34+ bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Leucemia Mielomonocítica Crónica/genética , Anciano , Médula Ósea/patología , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Factores de Empalme Serina-Arginina/genética , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
13.
Sci Rep ; 7(1): 6401, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743905

RESUMEN

Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic ßH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP+ cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding ßH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.


Asunto(s)
Eritrocitos/citología , Hemoglobina Fetal/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemangioblastos/citología , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular , Línea Celular , Rastreo Celular , Eritrocitos/metabolismo , Eritropoyesis , Proteínas Fluorescentes Verdes/genética , Hemangioblastos/metabolismo , Hematopoyesis , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
14.
FEBS Lett ; 590(22): 4116-4125, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27404333

RESUMEN

Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation. However, lack of compatible donors often means that patients remain on transplantation waiting lists for too long. The in vitro derivation of haematopoietic stem cells offers the possibility to generate tailor-made cells for the treatment of these patients. Promising approaches to generate in vitro-derived blood progenitors include the directed differentiation of pluripotent stem cells and the reprogramming of somatic cells.


Asunto(s)
Trasplante de Médula Ósea , Diferenciación Celular/genética , Células Madre Hematopoyéticas/citología , Células Madre/citología , Animales , Reprogramación Celular/genética , Humanos , Ratones , Medicina Regenerativa
15.
Cell Cycle ; 15(16): 2108-2114, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27399214

RESUMEN

The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hemangioblastos/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Biológicos
16.
Stem Cells Transl Med ; 5(10): 1330-1337, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388244

RESUMEN

: Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. Embryonic stem cell-based directed differentiation and direct reprogramming of somatic cells provide excellent tools for the potential generation of hematopoietic stem cells usable in the clinic for cellular therapies. In addition to blood stem cell transplantation, mature blood cells such as red blood cells, platelets, and engineered T cells have also been increasingly used to treat several diseases. Besides cellular therapies, induced blood progenitor cells generated from autologous sources (either induced pluripotent stem cells or somatic cells) can be useful for disease modeling of bone marrow failures and acquired blood disorders. However, although great progress has been made toward these goals, we are still far from the use of in vitro-derived blood products in the clinic. We review the current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives. SIGNIFICANCE: Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. The current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives is reviewed.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Animales , Humanos
18.
Sci Rep ; 6: 25917, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27197878

RESUMEN

Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies.


Asunto(s)
Células Sanguíneas/citología , Células Madre Embrionarias/citología , Grafito/química , Células Madre Hematopoyéticas/citología , Células Mieloides/citología , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Materiales Biocompatibles Revestidos/química , Células Madre Embrionarias Humanas/citología , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología
19.
Dev Cell ; 36(5): 572-87, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26923725

RESUMEN

Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula/fisiología , Proteínas de Homeodominio/metabolismo , Ratones , Unión Proteica/genética , Factores de Transcripción/metabolismo
20.
Cell Rep ; 9(5): 1871-1884, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466247

RESUMEN

Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo. Loss of p53 function facilitated reprogramming to blood, and p53(-/-) reprogrammed cells efficiently generated erythroid, megakaryocytic, myeloid, and lymphoid lineages. Genome-wide analyses revealed that generation of hematopoietic progenitors was preceded by the appearance of hemogenic endothelial cells expressing endothelial and hematopoietic genes. Altogether, our findings suggest that direct reprogramming could represent a valid alternative approach to the differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) for disease modeling and autologous blood cell therapies.


Asunto(s)
Reprogramación Celular , Fibroblastos/fisiología , Células Madre Hematopoyéticas/fisiología , Células Madre Adultas/fisiología , Animales , Células Cultivadas , Expresión Génica , Hematopoyesis , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcriptoma , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...