Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Sci Pollut Res Int ; 30(48): 105808-105828, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37721674

RESUMEN

Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.


Asunto(s)
Antimonio , Microbiota , Antimonio/análisis , Oxidación-Reducción , Bacterias , Minería
2.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37632198

RESUMEN

Semi-passive bioreactors based on iron and arsenic oxidation and coprecipitation are promising for the treatment of As-rich acid mine drainages. However, their performance in the field remains variable and unpredictable. Two bioreactors filled with distinct biomass carriers (plastic or a mix of wood and pozzolana) were monitored during 1 year. We characterized the dynamic of the bacterial communities in these bioreactors, and explored the influence of environmental and operational drivers on their diversity and activity. Bacterial diversity was analyzed by 16S rRNA gene metabarcoding. The aioA genes and transcripts were quantified by qPCR and RT-qPCR. Bacterial communities were dominated by several iron-oxidizing genera. Shifts in the communities were attributed to operational and physiochemical parameters including the nature of the biomass carrier, the water pH, temperature, arsenic, and iron concentrations. The bioreactor filled with wood and pozzolana showed a better resilience to disturbances, related to a higher bacterial alpha diversity. We evidenced for the first time aioA expression in a treatment system, associated with the presence of active Thiomonas spp. This confirmed the contribution of biological arsenite oxidation to arsenic removal. The resilience and the functional redundancy of the communities developed in the bioreactors conferred robustness and stability to the treatment systems.


Asunto(s)
Arsénico , ARN Ribosómico 16S , Reactores Biológicos , Biomasa , Hierro
3.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37407427

RESUMEN

Arsenic (As) and antimony (Sb) from mining sites can seep into aquatic ecosystems by acid mine drainage (AMD). Here, the possibility of concomitantly removing As and Sb from acidic waters by precipitation of sulfides induced by sulfate-reducing bacteria (SRB) was investigated in a fixed-bed column bioreactor. The real AMD water used to feed the bioreactor contained nearly 1 mM As, while the Sb concentrations were increased (0.008 ± 0.006 to 1.01 ± 0.07 mM) to obtain an Sb/As molar ratio = 1. Results showed that the addition of Sb did not affect the efficiency of As bio-precipitation. Sb was removed efficiently (up to 97.9% removal) between the inlet and outlet of the bioreactor, together with As (up to 99.3% removal) in all conditions. Sb was generally removed as it entered the bioreactor. Appreciable sulfate reduction occurred in the bioreactor, which could have been linked to the stable presence of a major SRB operational taxonomic unit affiliated with the Desulfosporosinus genus. The bacterial community included polymer degraders, fermenters, and acetate degraders. Results suggested that sulfate reduction could be a suitable bioremediation process for the simultaneous removal of Sb and As from AMD.


Asunto(s)
Arsénico , Desulfovibrio , Contaminantes Químicos del Agua , Antimonio/análisis , Sulfatos , Ecosistema , Reactores Biológicos , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 311(Pt 2): 137086, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334736

RESUMEN

This work aims to establish Sb mobility, its transfer to biota and its effect on soil health in a semi-arid climate. The results show the presence of stibnite (Sb2S3) as the main primary Sb compound, bindhemite (Pb2Sb2O6(O,OH)), and minor proportions of stibiconite (Sb3+(Sb5+)2O6(OH)) as oxidised Sb species. This research also observes very high total Sb contents in mining materials (max: 20,000 mg kg-1) and soils (400-3000 mg kg-1), with physical dispersion around mining materials restricted to 450 m. The soil-to-plant transfer is very low, (bioaccumulation factor: 0.0002-0.1520). Most Sb remains in a residual fraction (99.9%), a very low fraction is bound to Fe and Mn oxy-hydroxides or organic matter, and a negligible proportion of Sb is leachable. The higher Sb mobility rates has been found under oxidising conditions with a long contact time between solids and water. The main factors that explain the poor Sb mobility and dispersion in the mining area are the low annual rainfall rates that slow down the Sb mobilisation process and the scarce formation of oxidised Sb compounds. All these data suggest poor Sb (III) formation and a low toxicological risk in the area associated with past mining activities. The low mobility of Sb suggests advantages for future sustainable mining of such ore deposits in a semi-arid climate and is also indicative of the limitations of geochemical exploration in the search for new Sb deposits.

5.
Chemosphere ; 304: 135252, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691389

RESUMEN

Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 µg L-1). The monitoring of one of these drinking water wells showed As concentrations in the range 20-25 µg L-1. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ34SSO4 was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg-1 As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities conditions, without synthetic organic nutrient supply, in presence of H2 during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeocycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Agua Potable/química , Monitoreo del Ambiente , Agua Subterránea/química , Humanos , Sulfatos , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 318: 115538, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35772273

RESUMEN

Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.


Asunto(s)
Microbiota , Contaminantes del Suelo , Biodegradación Ambiental , Plomo , Suelo/química , Contaminantes del Suelo/análisis , Agua
7.
Environ Geochem Health ; 44(4): 1229-1244, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34993733

RESUMEN

Metal(loid) soil pollution causes environmental and health issues, and thus those sites need to be remediated. This can be done through phytostabilization, in combination with biochar amendment. The objectives were to investigate the potential of Salix viminalis L. associated with Trifolium repens L. for the phytostabilization of biochar-amended contaminated soils by assessing (1) the tolerance of both plants to metal(loid)s, through the biomass production, (2) the concentrations of metal(loid)s in plant parts and (3) the concentrations of metal(loid)s in soil pore water and percolation waters. Results showed that plant growth affected soil pore water Physico-chemical properties and metal(loid) mobility. When comparing the mono- and poly-cultures, although pH was higher with the polyculture than the monoculture, the decrease in Pb mobility did not differ. Moreover, the leachate analysis showed that As concentration in the soil particles leached from the soil was higher in the polyculture condition, while Pb concentration was the highest in the willow vegetated condition. Finally, willow dry weight was not affected by the presence of clover, while clover dry weight was lower when it was grown with willow. In conclusion, the results showed that the willow and clover polyculture was not better than the monoculture of these two species for the phytomanagement of a former mine site amended with biochar.


Asunto(s)
Salix , Contaminantes del Suelo , Trifolium , Biodegradación Ambiental , Carbón Orgánico/química , Técnicas de Cocultivo , Plomo/análisis , Suelo/química , Contaminantes del Suelo/análisis
8.
J Hazard Mater ; 424(Pt D): 127677, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774350

RESUMEN

Chronic exposure to arsenic may be detrimental to health. We investigated the behaviour, remediation and risk management of arsenic in Freiberg, Germany, characterized by past mining activities, and near Verdun in France, where World War I ammunition was destroyed. The main results included: (1) pot experiments using a biologically synthesized adsorbent (sorpP) with spring barley reduced the mobility of arsenic, (2) the Omega-3 Index ecotoxicological tests verified that sorpP reduced the uptake and toxicity of arsenic in plants, (3) reverse osmosis membrane systems provided 99.5% removal efficiency of arsenic from surface water, (4) the sustainability assessment revealed that adsorption and coagulation-filtration processes were the most feasible options for the treatment of surface waters with significant arsenic concentrations, and (5) a model was developed for assessing health risk due to arsenic exposure. Risk management is the main option for extensive areas, while remediation options that directly treat the soil can only be considered in small areas subject to sensitive use. We recommend the risk management procedure developed in Germany for other parts of the world where both geogenic and anthropogenic arsenic is present in agricultural soil and water. Risk management measures have been successful both in Freiberg and in Verdun.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Arsénico/toxicidad , Gestión de Riesgos , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Agua
10.
Environ Sci Pollut Res Int ; 29(7): 9462-9489, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34859349

RESUMEN

Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , Ecosistema , Humanos , Suelo , Contaminantes del Suelo/análisis , Agua
11.
J Hazard Mater ; 409: 124580, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248819

RESUMEN

Agricultural soils can contain high arsenic (As) concentrations due to specific geological contexts or pollution. Fertilizer amendments could influence As speciation and mobility thus increasing its transfer to crops and its toxicity. In the present study, field-relevant amounts of fertilizers were applied to soils from a cultivated field that was a former ammunition-burning site. Potassium phosphate (KP), ammonium sulfate and organic matter (OM) were applied to these soils in laboratory experiments to assess their impact on As leaching, bioavailability to Lactuca sativa and microbial parameters. None of the fertilizers markedly influenced As speciation and mobility, although trends showed an increase of mobility with KP and a decrease of mobility with ammonium sulfate. Moreover, KP induced a small increase of As in Lactuca sativa, and the polluted soil amended with ammonium sulfate was significantly less phytotoxic than the un-amended soil. Most probable numbers of AsIII-oxidizing microbes and AsIII-oxidizing activity were strongly linked to As levels in water and soils. Ammonium sulfate negatively affected AsIII-oxidizing activity in the un-polluted soil. Whereas no significant effect on As speciation in water could be detected, amendments may have an impact in the long term.

12.
Front Microbiol ; 11: 571244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329429

RESUMEN

Iron-reducing bacteria (IRB) are strongly involved in Fe cycling in surface environments. Transformation of Fe and associated trace elements is strongly linked to the reactivity of various iron minerals. Mechanisms of Fe (oxyhydr)oxides bio-reduction have been mostly elucidated with pure bacterial strains belonging to Geobacter or Shewanella genera, whereas studies involving mixed IRB populations remain scarce. The present study aimed to evaluate the iron reducing rates of IRB enriched consortia originating from complex environmental samples, when grown in presence of Fe (oxyhydr)oxides of different mineralogy. The abundances of Geobacter and Shewanella were assessed in order to acquire knowledge about the abundance of these two genera in relation to the effects of mixed IRB populations on kinetic control of mineralogical Fe (oxyhydr)oxides reductive dissolution. Laboratory experiments were carried out with two freshly synthetized Fe (oxyhydr)oxides presenting contrasting specific surfaces, and two defined Fe-oxides, i.e., goethite and hematite. Three IRB consortia were enriched from environmental samples from a riverbank subjected to cyclic redox oscillations related to flooding periods (Decize, France): an unsaturated surface soil, a flooded surface soil and an aquatic sediment, with a mixture of organic compounds provided as electron donors. The consortia could all reduce iron-nitrilotriacetate acid (Fe(III)-NTA) in 1-2 days. When grown on Fe (oxyhydr)oxides, Fe solubilization rates decreased as follows: fresh Fe (oxyhydr)oxides > goethite > hematite. Based on a bacterial rrs gene fingerprinting approach (CE-SSCP), bacterial community structure in presence of Fe(III)-minerals was similar to those of the site sample communities from which they originated but differed from that of the Fe(III)-NTA enrichments. Shewanella was more abundant than Geobacter in all cultures. Its abundance was higher in presence of the most efficiently reduced Fe (oxyhydr)oxide than with other Fe(III)-minerals. Geobacter as a proportion of the total community was highest in the presence of the least easily solubilized Fe (oxyhydr)oxides. This study highlights the influence of Fe mineralogy on the abundance of Geobacter and Shewanella in relation to Fe bio-reduction kinetics in presence of a complex mixture of electron donors.

13.
J Microbiol Methods ; 177: 106026, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795641

RESUMEN

A turbidimetric test for rapid quantification of As(III) (detection limit of 3 mg/L, quantification range of 10-100 mg/L) in liquid growth medium was developed for assessing and monitoring microbial As(III)-oxidizing and As(V)-reducing activities. This test is based on As(III) chelation with pyrrolidine dithiocarbamate followed by spectrometric measurement of absorbance, and was validated by comparison with AAS quantification of As after As(III)/As(V) separation.


Asunto(s)
Arsénico/análisis , Arsénico/química , Bacterias/metabolismo , Técnicas Microbiológicas/métodos , Biotransformación , Burkholderiales , Calibración , Microbiota/fisiología , Pirrolidinas , Sensibilidad y Especificidad , Tiocarbamatos
14.
Water Res ; 178: 115826, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361349

RESUMEN

In this study we investigate opportunities for reducing arsenic (As) to low levels, below 1 µg/L in produced drinking water from artificially infiltrated groundwater. We observe that rapid sand filtration is the most important treatment step for the oxidation and removal of As at water treatment plants which use artificially recharged groundwater as source. Removal of As is mainly due to As co-precipitation with Fe(III)(oxyhydr)oxides, which shows higher efficiency in rapid sand filter beds compared to aeration and supernatant storage. This is due to an accelerated oxidation of As(III) to As(V) in the filter bed which may be caused by the manganese oxides and/or As(III) oxidizing bacteria, as both are found in the coating of rapid sand filter media grains by chemical analysis and taxonomic profiling of the bacterial communities. Arsenic removal does not take place in treatment steps such as granular activated carbon filtration, ultrafiltration or slow sand filtration, due to a lack of hydrolyzing iron in their influent and a lack of adsorption affinity between As and the filtration surfaces. Further, we found that As reduction to below 1 µg/L can be effectively achieved at water treatment plants either by treating the influent of rapid sand filters by dosing potassium permanganate in combination with ferric chloride or by treating the effluent of rapid sand filters with ferric chloride dosing only. Finally, we observe that reducing the pH is an effective measure for increasing As co-precipitation with Fe(III)(oxyhydr)oxides, but only when the oxidized arsenic, As(V), is the predominant species in water.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Férricos , Filtración , Oxidación-Reducción , Dióxido de Silicio
15.
Res Microbiol ; 171(1): 13-20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31562920

RESUMEN

Microbial transformation of arsenic species and their interaction with the carbon cycle play a major role in the mobility of this toxic metalloid in the environment. The influence of simple or complex organic substrates on arsenic bio-oxidation was studied using two bacterial strains: one - the arsenivorans strain of Thiomonas delicata - is able to use AsIII as sole energy source; the other, Herminiimonas arsenicoxydans, is not. Experiments were performed at two AsIII concentrations (75 and 2 mg/L). At 75 mg/L As, for both strains, expression of aioA gene decreased when yeast extract concentration was raised from 0.2 to 1 g/L. At 2 mg/L As, the presence of either yeast extract or simple (succinate or acetate) organic substrates in the medium during bacterial growth decreased the AsIII-oxidation rate by both strains. When added specifically during oxidation test, yeast extract but not simple organic substrates seems to have a negative effect on AsIII oxidation. Taken together, results confirm the negative influence of simple or complex organic substrates on the kinetics of microbial AsIII oxidation and suggest that this effect results from different mechanisms depending on the type of organic substrate. Further, for the first time, the influence of a complex organic substrate, yeast extract, on aioA gene expression has been evidenced.


Asunto(s)
Arsenitos/metabolismo , Proteínas Bacterianas/genética , Burkholderiales/metabolismo , Regulación Bacteriana de la Expresión Génica , Oxalobacteraceae/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderiales/genética , Oxalobacteraceae/genética , Oxidación-Reducción
16.
J Environ Manage ; 232: 117-130, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30471545

RESUMEN

Mine soils often contain metal(loid)s that may lead to serious environmental problems. Phytoremediation, consisting in covering the soil with specific plants with the possible addition of amendments, represents an interesting way of enhancing the quality of mine soils by retaining contaminants and reducing soil erosion. In order to study the effect of an assisted phytoremediation (with willow and ryegrass) on the properties of soil pore water (SPW), we investigated the impact of amendment with biochar (BC) combined with the planting of willow and ryegrass on the behavior of several metal(loid)s (Pb, Zn, Ba, As, and Cd) in a mine soil. Data on the physicochemical parameters and concentrations of the different metal(loid)s in both SPW and in plant tissues of willow and ryegrass highlight the importance of BC for SPW properties in terms of reductions in soluble concentrations of Pb and Zn, although there was no effect on the behavior of As and Cd. BC also increased soluble concentrations of Ba, probably related to ion release by the BC. By improving major ions available in mine soil, BC improved the lifetime of plants and enhanced their growth. Plant development did not appear to significantly affect the physicochemical parameters of SPW. Willow and ryegrass growing on soil with BC incorporated Cd and Ba into their tissues. The influence of plants on the behavior of metal(loid)s was noticeable only for ryegrass growing in soil with 2% BC, where it modified the behavior of Pb and Ba.


Asunto(s)
Lolium , Metales Pesados , Salix , Contaminantes del Suelo , Cadmio , Carbón Orgánico , Plomo , Suelo , Agua , Zinc
17.
Sci Total Environ ; 697: 134108, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32380607

RESUMEN

The burning of chemical weapons in the 1926-1928 period produced polluted technosols with elevated levels of arsenic, zinc, lead and copper. During an eight-month mesocosm experiment, these soils were submitted to two controlled environmental changes, namely the alternation of dry and water-saturated conditions and the addition of fragmented organic forest litter to the surface soil. We investigated, by sequencing the gene coding 16S rRNA and 18S rRNA, (1) the structure of the prokaryotic and eukaryotic community in this polluted technosol and (2) their response to the simulated environmental changes, in the four distinct layers of the mesocosm. In spite of the high concentrations of toxic elements, microbial diversity was found to be similar to that of non-polluted soils. The bacterial community was dominated by Proteobacteria, Acidobacteria and Bacteroidetes, while the fungal community was dominated by Ascomicota. Amongst the most abundant bacterial Operational Taxonomic Units (OTUs), including Sphingomonas as a major genus, some were common to soil environments in general whereas a few, such as organisms related to Leptospirillum and Acidiferrobacter, seemed to be more specific to the geochemical context. Evolution of the microbial abundance and community structures shed light on modifications induced by water saturation and the addition of forest litter to the soil surface. Co-inertia analysis suggests a relationship between the physico-chemical parameters total organic carbon, Zn, NH4+ and As(III) concentrations and the bacterial community structure. Both these results imply that microbial community dynamics linked to environmental changes should be considered as factors influencing the behavior of toxic elements on former ammunition burning sites.


Asunto(s)
Sustancias para la Guerra Química/análisis , Incineración , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Francia , Hongos/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Suelo/química
18.
Appl Microbiol Biotechnol ; 102(22): 9803-9813, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30155752

RESUMEN

Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment.


Asunto(s)
Arsénico/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Ácidos/química , Ácidos/metabolismo , Arsénico/análisis , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Biodiversidad , Hierro/química , Cinética , Minería , Oxidación-Reducción , Factores de Tiempo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 627: 216-226, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426144

RESUMEN

Thermal destruction of chemical munitions from World War I led to the formation of a heavily contaminated residue that contains an unexpected mineral association in which a microbial As transformation has been observed. A mesocosm study was conducted to assess the impact of water saturation episodes and input of bioavailable organic matter (OM) on pollutant behavior in relation to biogeochemical parameters. Over a period of about eight (8) months, the contaminated soil was subjected to cycles of dry and wet periods corresponding to water table level variations. After the first four (4) months, fragmented litter from the nearby forest was placed on top of the soil. The mesocosm solid phase was sampled by three rounds of coring: at the beginning of the experiment, after four (4) months (before the addition of OM), and at the end of the experiment. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy observations showed that an amorphous phase, which was the primary carrier of As, Zn, and Cu, was unstable under water-saturated conditions and released a portion of the contaminants in solution. Precipitation of a lead arsenate chloride mineral, mimetite, in soils within the water saturated level caused the immobilization of As and Pb. Mimetite is a durable trap because of its large stability domain; however, this precipitation was limited by a low Pb concentration inducing that high amounts of As remained in solution. The addition of forest litter modified the quantities and qualities of soil OM. Microbial As transformation was affected by the addition of OM, which increased the concentration of both As(III)-oxidizing and As(V)-reducing microorganisms. The addition of OM negatively impacted the As(III) oxidizing rate, however As(III) oxidation was still the dominant reaction in accordance with the formation of arsenate-bearing minerals.

20.
Appl Microbiol Biotechnol ; 102(5): 2413-2424, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29380031

RESUMEN

Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71-75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70-98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.


Asunto(s)
Arsénico/metabolismo , Bacterias/metabolismo , Contaminantes Químicos del Agua/metabolismo , Arsénico/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Hierro/metabolismo , Minería , Oxidación-Reducción , Filogenia , Temperatura , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...