Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Crit Care ; 82: 154759, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461659

RESUMEN

OBJECTIVES: Although respiratory failure is the most common feature in coronavirus disease 2019 (COVID-19), abdominal organ involvement is likewise frequently observed. To investigate visceral and thoracic circulation and abdominal organ damage in COVID-19 patients. MATERIALS AND METHODS: A monocentric observational study was carried on. In COVID-19 patients affected by acute respiratory distress syndrome (ARDS) (n = 31) or mild pneumonia (n = 60) thoracoabdominal circulation was evaluated using Doppler-ultrasound and computed tomography. The study also included non-COVID-19 patients affected by ARDS (n = 10) or portal hypertension (n = 10) for comparison of the main circulatory changes. RESULTS: Patients affected by COVID-19 ARDS showed hyperdynamic visceral flow and increased portal velocity, hepatic artery resistance-index, and spleen diameter relative to those with mild-pneumonia (p = 0.001). Splanchnic circulatory parameters significantly correlated with the main respiratory indexes (p < 0.001) and pulmonary artery diameter (p = 0.02). The chest and abdominal vascular remodeling pattern of COVID-19 ARDS patients resembled the picture observed in the PH group, while differed from that of the non-COVID ARDS group. A more severe COVID-19 presentation was associated with worse liver dysfunction and enhanced inflammatory activation; these parameters both correlated with abdominal (p = 0.04) and chest imaging measures (p = 0.03). CONCLUSION: In COVID-19 ARDS patients there are abdominal and lung vascular modifications that depict a portal hypertension-like pattern. The correlation between visceral vascular remodeling, pulmonary artery enlargement, and organ damage in these critically ill patients is consistent with a portal hyperlfow-like syndrome that could contribute to the peculiar characteristics of respiratory failure in these patients. CLINICAL RELEVANCE STATEMENT: our data suggest that the severity of COVID-19 lung involvement is directly related to the development of a portal hyperflow-like syndrome. These observations should help in defining the need for a closer monitoring, but also to develop dedicated therapeutic strategies.

2.
Sci Rep ; 14(1): 6040, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472309

RESUMEN

The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.


Asunto(s)
Trasplante de Hígado , Ratas , Animales , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Hígado/metabolismo , Perfusión/métodos , Fenotipo
3.
Commun Med (Lond) ; 4(1): 18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361130

RESUMEN

BACKGROUND: Lung regions excluded from mechanical insufflation are traditionally assumed to be spared from ventilation-associated lung injury. However, preliminary data showed activation of potential mechanisms of injury within these non-ventilated regions (e.g., hypoperfusion, inflammation). METHODS: In the present study, we hypothesized that non-ventilated lung injury (NVLI) may develop within 24 h of unilateral mechanical ventilation in previously healthy pigs, and we performed extended pathophysiological measures to profile NVLI. We included two experimental groups undergoing exclusion of the left lung from the ventilation with two different tidal volumes (15 vs 7.5 ml/kg) and a control group on bilateral ventilation. Pathophysiological alteration including lung collapse, changes in lung perfusion, lung stress and inflammation were measured. Lung injury was quantified by histological score. RESULTS: Histological injury score of the non-ventilated lung is significantly higher than normally expanded lung from control animals. The histological score showed lower intermediate values (but still higher than controls) when the tidal volume distending the ventilated lung was reduced by 50%. Main pathophysiological alterations associated with NVLI were: extensive lung collapse; very low pulmonary perfusion; high inspiratory airways pressure; and higher concentrations of acute-phase inflammatory cytokines IL-6, IL-1ß and TNF-α and of Angiopoietin-2 (a marker of endothelial activation) in the broncho-alveolar lavage. Only the last two alterations were mitigated by reducing tidal volume, potentially explaining partial protection. CONCLUSIONS: Non-ventilated lung injury develops within 24 h of controlled mechanical ventilation due to multiple pathophysiological alterations, which are only partially prevented by low tidal volume.


Respiratory failure that occurs in cases of atelectasis, pneumonia and acute hypoxemic respiratory failure a machine called a mechanical ventilator is used to move air in and out of the patient's lungs. We know that the use of a mechanical ventilator can induce lung injury, but complete exclusion from ventilation might not be safe. Using pig lungs to mimic the patient's lungs, we evaluated the use of a ventilator against non-use. We find that the lungs sustained injury regardless of ventilator use. The non-ventilated lung injury consisted of collapse (lack of expansion), low amount of blood flow, high ventilation pressure and inflammatory response. Physicians should be aware that also the regions of the lung not receiving ventilation are at risk of injury.

6.
Minerva Anestesiol ; 89(9): 773-782, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951601

RESUMEN

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS: Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-ßHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS: The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-ßHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-ßHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-ßHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS: The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.


Asunto(s)
Dióxido de Carbono , Respiración Artificial , Animales , Porcinos , Respiración Artificial/métodos , Lactato de Sodio , Ácido Clorhídrico , Concentración de Iones de Hidrógeno , Soluciones para Diálisis
7.
Biomedicines ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36140183

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a lifesaving support for respiratory and cardiovascular failure. However, ECMO induces a systemic inflammatory response syndrome that can lead to various complications, including endothelial dysfunction in the cerebral circulation. We aimed to investigate whether ECMO-associated endothelial dysfunction also affected coronary circulation. Ten-day-old piglets were randomized to undergo either 8 h of veno-arterial ECMO (n = 5) or no treatment (Control, n = 5). Hearts were harvested and coronary arteries were dissected and mounted as 3 mm rings in organ baths for isometric force measurement. Following precontraction with the thromboxane prostanoid (TP) receptor agonist U46619, concentration−response curves to the endothelium-dependent vasodilator bradykinin (BK) and the nitric oxide (NO) donor (endothelium-independent vasodilator) sodium nitroprusside (SNP) were performed. Relaxation to BK was studied in the absence or presence of the NO synthase inhibitor Nω-nitro-L-arginine methyl ester HCl (L-NAME). U46619-induced contraction and SNP-induced relaxation were similar in control and ECMO coronary arteries. However, BK-induced relaxation was significantly impaired in the ECMO group (30.4 ± 2.2% vs. 59.2 ± 2.1%; p < 0.0001). When L-NAME was present, no differences in BK-mediated relaxation were observed between the control and ECMO groups. Taken together, our data suggest that ECMO exposure impairs endothelium-derived NO-mediated coronary relaxation. However, there is a NO-independent component in BK-induced relaxation that remains unaffected by ECMO. In addition, the smooth muscle cell response to exogenous NO is not altered by ECMO exposure.

8.
Front Med (Lausanne) ; 9: 901809, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669918

RESUMEN

Background: Unilateral ligation of the pulmonary artery (UPAL) induces bilateral lung injury in pigs undergoing controlled mechanical ventilation. Possible mechanisms include redistribution of ventilation toward the non-ligated lung and hypoperfusion of the ligated lung. The addition of 5% CO2 to the inspiratory gas (FiCO2) prevents the injury, but it is not clear whether lung protection is a direct effect of CO2 inhalation or it is mediated by plasmatic hypercapnia. This study aims to compare the effects and mechanisms of FiCO2 vs. hypercapnia induced by low tidal volume ventilation or instrumental dead space. Methods: Healthy pigs underwent left UPAL and were allocated for 48 h to the following: Volume-controlled ventilation (VCV) with VT 10 ml/kg (injury, n = 6); VCV plus 5% FiCO2 (FiCO2, n = 7); VCV with VT 6 ml/kg (low VT, n = 6); VCV plus additional circuit dead space (instrumental VD, n = 6). Histological score, regional compliance, wet-to-dry ratio, and inflammatory infiltrate were assessed to evaluate lung injury at the end of the study. To investigate the mechanisms of protection, we quantified the redistribution of ventilation to the non-ligated lung, as the ratio between the percentage of tidal volume to the right and to the left lung (VTRIGHT/LEFT), and the hypoperfusion of the ligated lung as the percentage of blood flow reaching the left lung (PerfusionLEFT). Results: In the left ligated lung, injury was prevented only in the FiCO2 group, as indicated by lower histological score, higher regional compliance, lower wet-to-dry ratio and lower density of inflammatory cells compared to other groups. For the right lung, the histological score was lower both in the FiCO2 and in the low VT groups, but the other measures of injury showed lower intensity only in the FiCO2 group. VTRIGHT/LEFT was lower and PerfusionLEFT was higher in the FiCO2 group compared to other groups. Conclusion: In a model of UPAL, inhaled CO2 but not hypercapnia grants bilateral lung protection. Mechanisms of protection include reduced overdistension of the non-ligated and increased perfusion of the ligated lung.

9.
Biomedicines ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327340

RESUMEN

Machine perfusion (MP) allows the maintenance of liver cells in a metabolically active state ex vivo and can potentially revert metabolic perturbations caused by donor warm ischemia, procurement, and static cold storage (SCS). The present preclinical research investigated the metabolic outcome of the MP procedure by analyzing rat liver tissue, bile, and perfusate samples by means of high-field (600 MHz) nuclear magnetic resonance (NMR) spectroscopy. An established rat model of normothermic MP (NMP) was used. Experiments were carried out with the addition of an oxygen carrier (OxC) to the perfusion fluid (OxC-NMP, n = 5) or without (h-NMP, n = 5). Bile and perfusate samples were collected throughout the procedure, while biopsies were only taken at the end of NMP. Two additional groups were: (1) Native, in which tissue or bile specimens were collected from rats in resting conditions; and (2) SCS, in which biopsies were taken from cold-stored livers. Generally, NMP groups showed a distinctive metabolomic signature in all the analyzed biological matrices. In particular, many of the differentially expressed metabolites were involved in mitochondrial biochemical pathways. Succinate, acetate, 3-hydroxybutyrate, creatine, and O-phosphocholine were deeply modulated in ex vivo perfused livers compared to both the Native and SCS groups. These novel results demonstrate a broad modulation of mitochondrial metabolism during NMP that exceeds energy production and redox balance maintenance.

10.
Crit Care Med ; 50(5): e468-e476, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044966

RESUMEN

OBJECTIVES: Extracorporeal carbon dioxide removal is used to treat patients suffering from acute respiratory failure. However, the procedure is hampered by the high blood flow required to achieve a significant CO2 clearance. We aimed to develop an ultralow blood flow device to effectively remove CO2 combined with continuous renal replacement therapy (CRRT). DESIGN: Preclinical, proof-of-concept study. SETTING: An extracorporeal circuit where 200 mL/min of blood flowed through a hemofilter connected to a closed-loop dialysate circuit. An ion-exchange resin acidified the dialysate upstream, a membrane lung to increase Pco2 and promote CO2 removal. PATIENTS: Six, 38.7 ± 2.0-kg female pigs. INTERVENTIONS: Different levels of acidification were tested (from 0 to 5 mEq/min). Two l/hr of postdilution CRRT were performed continuously. The respiratory rate was modified at each step to maintain arterial Pco2 at 50 mm Hg. MEASUREMENTS AND MAIN RESULTS: Increasing acidification enhanced CO2 removal efficiency of the membrane lung from 30 ± 5 (0 mEq/min) up to 145 ± 8 mL/min (5 mEq/min), with a 483% increase, representing the 73% ± 7% of the total body CO2 production. Minute ventilation decreased accordingly from 6.5 ± 0.7 to 1.7 ± 0.5 L/min. No major side effects occurred, except for transient tachycardia episodes. As expected from the alveolar gas equation, the natural lung Pao2 dropped at increasing acidification steps, given the high dissociation between the oxygenation and CO2 removal capability of the device, thus Pao2 decreased. CONCLUSIONS: This new extracorporeal ion-exchange resin-based multiple-organ support device proved extremely high efficiency in CO2 removal and continuous renal support in a preclinical setting. Further studies are required before clinical implementation.


Asunto(s)
Terapia de Reemplazo Renal Continuo , Animales , Dióxido de Carbono , Soluciones para Diálisis , Femenino , Humanos , Oxígeno , Respiración Artificial/métodos , Porcinos
11.
ASAIO J ; 68(2): 184-189, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33788801

RESUMEN

Veno-venous extracorporeal membrane oxygenation (vv-ECMO) represents one of the most advanced respiratory support for patients suffering from severe acute respiratory distress syndrome. During vv-ECMO a certain amount of extracorporeal oxygenated blood can flow back from the reinfusion into the drainage cannula without delivering oxygen to the patient. Detection and quantification of this dynamic phenomenon, defined recirculation, are critical to optimize the ECMO efficiency. Our study aimed to measure the recirculation fraction (RF) using a thermodilution technique. We built an in vitro circuit to simulate patients undergoing vv-ECMO (ECMO flow: 1.5, 3, and 4.5 L/min) with different cardiac output, using a recirculation bridge to achieve several known RFs (from 0% to 50%). The RF, computed as the ratio of the area under temperature-time curves (AUC) of the drainage and reinfusion, was significantly related to the set RF (AUC ratio (%) = 0.979 × RF (%) + 0.277%, p < 0.0001), but it was not dependent on tested ECMO and cardiac output values. A Bland-Altman analysis showed an AUC ratio bias (precision) of -0.21% for the overall data. Test-retest reliability showed an intraclass correlation coefficient of 0.993. This study proved the technical feasibility and computation validity of the applied thermodilution technique in computing vv-ECMO RF.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Cánula , Oxigenación por Membrana Extracorpórea/efectos adversos , Humanos , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/terapia , Termodilución
12.
Biomedicines ; 9(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680561

RESUMEN

Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons' subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between "machine perfusion (MP)-yes" vs. "MP-no"; "brain-death (DBD) vs. donation-after-circulatory-death (DCD)"; "early-allograft-dysfunction (EAD)-yes" vs. "EAD-no" groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the "EAD-yes" compared to the "EAD-no" group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.

13.
Membranes (Basel) ; 11(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357197

RESUMEN

During the COVID-19 pandemic, a shortage of mechanical ventilators was reported and ventilator sharing between patients was proposed as an ultimate solution. Two lung simulators were ventilated by one anesthesia machine connected through two respiratory circuits and T-pieces. Five different combinations of compliances (30-50 mL × cmH2O-1) and resistances (5-20 cmH2O × L-1 × s-1) were tested. The ventilation setting was: pressure-controlled ventilation, positive end-expiratory pressure 15 cmH2O, inspiratory pressure 10 cmH2O, respiratory rate 20 bpm. Pressures and flows from all the circuit sections have been recorded and analyzed. Simulated patients with equal compliance and resistance received similar ventilation. Compliance reduction from 50 to 30 mL × cmH2O-1 decreased the tidal volume (VT) by 32% (418 ± 49 vs. 285 ± 17 mL). The resistance increase from 5 to 20 cmH2O × L-1 × s-1 decreased VT by 22% (425 ± 69 vs. 331 ± 51 mL). The maximal alveolar pressure was lower at higher compliance and resistance values and decreased linearly with the time constant (r² = 0.80, p < 0.001). The minimum alveolar pressure ranged from 15.5 ± 0.04 to 16.57 ± 0.04 cmH2O. Cross-flows between the simulated patients have been recorded in all the tested combinations, during both the inspiratory and expiratory phases. The simultaneous ventilation of two patients with one ventilator may be unable to match individual patient's needs and has a high risk of cross-interference.

14.
Membranes (Basel) ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206672

RESUMEN

Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH-CO2 interactions. Subsequently, we compared NaOH infusion, named "alkaline liquid ventilation", to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min-1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L-1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L-1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min-1) for each fluid plus 10 L × min-1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min-1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min-1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.

15.
Am J Respir Crit Care Med ; 204(8): 933-942, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252009

RESUMEN

Rationale: Unilateral ligation of the pulmonary artery may induce lung injury through multiple mechanisms, which might be dampened by inhaled CO2. Objectives: This study aims to characterize bilateral lung injury owing to unilateral ligation of the pulmonary artery in healthy swine undergoing controlled mechanical ventilation and its prevention by 5% CO2 inhalation and to investigate relevant pathophysiological mechanisms. Methods: Sixteen healthy pigs were allocated to surgical ligation of the left pulmonary artery (ligation group), seven to surgical ligation of the left pulmonary artery and inhalation of 5% CO2 (ligation + FiCO2 5%), and six to no intervention (no ligation). Then, all animals received mechanical ventilation with Vt 10 ml/kg, positive end-expiratory pressure 5 cm H2O, respiratory rate 25 breaths/min, and FiO2 50% (±FiCO2 5%) for 48 hours or until development of severe lung injury. Measurements and Main Results: Histological, physiological, and quantitative computed tomography scan data were compared between groups to characterize lung injury. Electrical impedance tomography and immunohistochemistry analysis were performed in a subset of animals to explore mechanisms of injury. Animals from the ligation group developed bilateral lung injury as assessed by significantly higher histological score, larger increase in lung weight, poorer oxygenation, and worse respiratory mechanics compared with the ligation + FiCO2 5% group. In the ligation group, the right lung received a larger fraction of Vt and inflammation was more represented, whereas CO2 dampened both processes. Conclusions: Mechanical ventilation induces bilateral lung injury within 48 hours in healthy pigs undergoing left pulmonary artery ligation. Inhalation of 5% CO2 prevents injury, likely through decreased stress to the right lung and antiinflammatory effects.


Asunto(s)
Dióxido de Carbono/uso terapéutico , Modelos Animales de Enfermedad , Lesión Pulmonar/prevención & control , Sustancias Protectoras/uso terapéutico , Arteria Pulmonar/cirugía , Respiración Artificial/efectos adversos , Porcinos/cirugía , Administración por Inhalación , Animales , Femenino , Ligadura , Lesión Pulmonar/etiología , Lesión Pulmonar/fisiopatología , Lesión Pulmonar/terapia , Resultado del Tratamiento
16.
Front Physiol ; 12: 663313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897471

RESUMEN

Rationale: Reducing the respiratory rate during extracorporeal membrane oxygenation (ECMO) decreases the mechanical power, but it might induce alveolar de-recruitment. Dissecting de-recruitment due to lung edema vs. the fraction due to hypoventilation may be challenging in injured lungs. Objectives: We characterized changes in lung physiology (primary endpoint: development of atelectasis) associated with progressive reduction of the respiratory rate in healthy animals on ECMO. Methods: Six female pigs underwent general anesthesia and volume control ventilation (Baseline: PEEP 5 cmH2O, Vt 10 ml/kg, I:E = 1:2, FiO2 0.5, rate 24 bpm). Veno-venous ECMO was started and respiratory rate was progressively reduced to 18, 12, and 6 breaths per minute (6-h steps), while all other settings remained unchanged. ECMO blood flow was kept constant while gas flow was increased to maintain stable PaCO2. Measurements and Main Results: At Baseline (without ECMO) and toward the end of each step, data from quantitative CT scan, electrical impedance tomography, and gas exchange were collected. Increasing ECMO gas flow while lowering the respiratory rate was associated with an increase in the fraction of non-aerated tissue (i.e., atelectasis) and with a decrease of tidal ventilation reaching the gravitationally dependent lung regions (p = 0.009 and p = 0.018). Intrapulmonary shunt increased (p < 0.001) and arterial PaO2 decreased (p < 0.001) at lower rates. The fraction of non-aerated lung was correlated with longer expiratory time spent at zero flow (r = 0.555, p = 0.011). Conclusions: Progressive decrease of respiratory rate coupled with increasing CO2 removal in mechanically ventilated healthy pigs is associated with development of lung atelectasis, higher shunt, and poorer oxygenation.

17.
Peptides ; 141: 170552, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865932

RESUMEN

The increasing use of marginal lungs for transplantation encourages novel approaches to improve graft quality. Melanocortins and their receptors (MCRs) exert multiple beneficial effects in pulmonary inflammation. We tested the idea that treatment with the synthetic α-melanocyte-stimulating hormone analogue [Nle4,D-Phe7]-α-MSH (NDP-MSH) during ex vivo lung perfusion (EVLP) could exert positive influences in lungs exposed to different injuries. Rats were assigned to one of the following protocols (N = 10 each): 1) ischemia/reperfusion (IR) or 2) cardiac death (CD) followed by ex vivo perfusion. NDP-MSH treatment was performed in five rats of each protocol before lung procurement and during EVLP. Pulmonary function and perfusate concentration of gases, electrolytes, metabolites, nitric-oxide, mediators, and cells were assessed throughout EVLP. ATP content and specific MCR expression were investigated in perfused lungs and in biopsies collected from rats in resting conditions (Native, N = 5). NDP-MSH reduced the release of inflammatory mediators in perfusates of both the IR and the CD groups. Treatment was likewise associated with a lesser amount of leukocytes (IR: p = 0.034; CD: p = 0.002) and reduced lactate production (IR: p = 0.010; CD: p = 0.008). In lungs exposed to IR injury, the NDP-MSH group showed increased ATP content (p = 0.040) compared to controls. In CD lungs, a significant improvement of vascular (p = 0.002) and airway (Ppeak: p < 0.001, compliance: p < 0.050, pO2: p < 0.001) parameters was observed. Finally, the expression of MC1R and MC5R was detected in both native and ex vivo-perfused lungs. The results indicate that NDP-MSH administration preserves lung function through broad positive effects on multiple pathways and suggest that exploitation of the melanocortin system during EVLP could improve reconditioning of marginal lungs before transplantation.


Asunto(s)
Pulmón/efectos de los fármacos , Pulmón/fisiología , Perfusión/métodos , alfa-MSH/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Muerte , Ácido Hialurónico/metabolismo , Mediadores de Inflamación/metabolismo , Ácido Láctico/metabolismo , Pulmón/fisiopatología , Masculino , Técnicas de Cultivo de Órganos , Perfusión/efectos adversos , Edema Pulmonar/etiología , Ratas Sprague-Dawley , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Daño por Reperfusión/prevención & control , alfa-MSH/farmacología
18.
J Clin Med ; 8(11)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717387

RESUMEN

Ex-situ machine perfusion (MP) has been increasingly used to enhance liver quality in different settings. Small animal models can help to implement this procedure. As most normothermic MP (NMP) models employ sub-physiological levels of oxygen delivery (DO2), the aim of this study was to investigate the effectiveness and safety of different DO2, using human red blood cells (RBCs) as oxygen carriers on metabolic recovery in a rat model of NMP. Four experimental groups (n = 5 each) consisted of (1) native (untreated/control), (2) liver static cold storage (SCS) 30 min without NMP, (3) SCS followed by 120 min of NMP with Dulbecco-Modified-Eagle-Medium as perfusate (DMEM), and (4) similar to group 3, but perfusion fluid was added with human RBCs (hematocrit 15%) (BLOOD). Compared to DMEM, the BLOOD group showed increased liver DO2 (p = 0.008) and oxygen consumption ( V O ˙ 2) (p < 0.001); lactate clearance (p < 0.001), potassium (p < 0.001), and glucose (p = 0.029) uptake were enhanced. ATP levels were likewise higher in BLOOD relative to DMEM (p = 0.031). V O ˙ 2 and DO2 were highly correlated (p < 0.001). Consistently, the main metabolic parameters were directly correlated with DO2 and V O ˙ 2. No human RBC related damage was detected. In conclusion, an optimized DO2 significantly reduces hypoxic damage-related effects occurring during NMP. Human RBCs can be safely used as oxygen carriers.

19.
Biochem Biophys Res Commun ; 483(1): 516-521, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28007599

RESUMEN

The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.


Asunto(s)
Secuencias Invertidas Repetidas , Elementos de Respuesta , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Cromatina/genética , Simulación por Computador , Mutación , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Levaduras/genética
20.
Sensors (Basel) ; 14(6): 11260-76, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24961217

RESUMEN

We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10(-5) is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Mezclas Complejas/análisis , Gases/análisis , Microquímica/instrumentación , Ultrasonografía/instrumentación , Técnicas de Química Analítica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Microquímica/métodos , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...