Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2269, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280895

RESUMEN

The mosquito species Aedes aegypti (L.) is known to act as a vector in the transmission of various diseases, including dengue fever and yellow fever. The use of insect repellents is one of precautionary measures used to mitigate the risk of these diseases in humans by reducing mosquito biting. Nepetalactone, a potent natural insect repellent primarily found in catnip (Nepeta cataria) essential oil, has emerged as a promising candidate for mosquito repellence. Here, we evaluated the potential of catnip essential oil (> 95% nepetalactone) for use as a mosquito repellent. Using a Y-tube olfactometer and human hands as an attractant, we analysed the effectiveness of catnip oil at repelling the mosquito species Aedes aegypti. We tested a range of dilutions of catnip essential oil and found that concentrations as low as 2% were effective at repelling > 70% of mosquitoes for between one and four hours after repellent application. These findings suggest that nepetalactone could potentially be used as a natural, effective alternative to synthetic mosquito repellents, thereby offering protection against vector-borne diseases.


Asunto(s)
Aedes , Monoterpenos Ciclopentánicos , Repelentes de Insectos , Nepeta , Aceites Volátiles , Pironas , Animales , Humanos , Repelentes de Insectos/farmacología , Aceites Volátiles/farmacología , Mosquitos Vectores
2.
Med Vet Entomol ; 36(2): 212-222, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388913

RESUMEN

Malaria is among the leading causes of death in Uganda, and Anopheles gambiae sensu stricto (s.s.) is the predominant vector. Although current vector control interventions have greatly reduced the malaria burden, the disease persists. New interventions are needed in order to eradicate them. Evaluation of new tools will require the availability of well-characterized test vector populations. Juvenile An. gambiae s.s. from Kibbuye and Kayonjo-derived populations were characterized under semi-field and laboratory conditions, given that various vector traits, including abundance and fitness are dependent on development profiles at this life stage. Ten replicates comprising 30 first instar larvae each were profiled for various life-history attributes (egg hatching, larval development time, larval survivorship, pupal weight and pupation rate). All parameters were similar for the two sites under laboratory conditions. However, the similarities or differences between field and laboratory development were parameter-specific. Whereas, larval survivorship and pupal weight were similar across seasons and laboratory in colonies from both sites, in the semi-field settings, pupation rate and larval survivorship differed between seasons in both sites. In addition, the average larval development time during the wet season was longer than that of the laboratory for both sites. Availability of mirror field sites is important for future tool evaluations.


Asunto(s)
Anopheles , Malaria , Animales , Larva , Malaria/prevención & control , Malaria/veterinaria , Mosquitos Vectores , Pupa , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...