Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1245299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953797

RESUMEN

Staphylococcus aureus (S. aureus) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells - and thus to form a reservoir escaping humoral immunity - is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8+ T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8+ T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus. We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8+ T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus-infected dendritic cells, F5 CD8+ T cells produced IFN-γ in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8+ T cells. This paves the way for the development of CD8+ T cell-based therapies against S. aureus.


Asunto(s)
Linfocitos T CD8-positivos , Staphylococcus aureus , Ratones , Animales , Linfocitos T Citotóxicos , Epítopos de Linfocito T , Células Dendríticas
2.
Nucleic Acids Res ; 50(16): 9149-9161, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35950487

RESUMEN

DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.


Asunto(s)
Girasa de ADN , ADN-Topoisomerasas de Tipo I , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Antibacterianos/farmacología
3.
Sci Rep ; 11(1): 15574, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341378

RESUMEN

Methods to test the safety of wood material for hygienically sensitive places are indirect, destructive and limited to incomplete microbial recovery via swabbing, brushing and elution-based techniques. Therefore, we chose mCherry Staphylococcus aureus as a model bacterium for solid and porous surface contamination. Confocal spectral laser microscope (CSLM) was employed to characterize and use the autofluorescence of Sessile oak (Quercus petraea), Douglas fir (Pseudotsuga menziesii) and poplar (Populus euramericana alba L.) wood discs cut into transversal (RT) and tangential (LT) planes. The red fluorescent area occupied by bacteria was differentiated from that of wood, which represented the bacterial quantification, survival and bio-distribution on surfaces from one hour to one week after inoculation. More bacteria were present near the surface on LT face wood as compared to RT and they persisted throughout the study period. Furthermore, this innovative methodology identified that S. aureus formed a dense biofilm on melamine but not on oak wood in similar inoculation and growth conditions. Conclusively, the endogenous fluorescence of materials and the model bacterium permitted direct quantification of surface contamination by using CSLM and it is a promising tool for hygienic safety evaluation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microscopía Confocal , Análisis Espectral , Staphylococcus aureus/fisiología , Fluorescencia , Quercus/microbiología , Propiedades de Superficie , Triazinas , Madera/microbiología
4.
Nucleic Acids Res ; 47(18): 9871-9887, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31504767

RESUMEN

The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5' end while its 3' part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3'UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.


Asunto(s)
Proteínas Bacterianas/genética , Estrés Oxidativo/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica/genética , Homeostasis/genética , Humanos , Manganeso/química , Oxidación-Reducción , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Inanición , Superóxido Dismutasa/química , Superóxido Dismutasa/genética
5.
J Infect Dis ; 220(4): 710-719, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31001627

RESUMEN

BACKGROUND: Necrotizing soft tissue infections (NSTIs) caused by group A Streptococcus (GAS) and occasionally by Staphylococcus aureus (SA) frequently involve the deep fascia and often lead to muscle necrosis. METHODS: To assess the pathogenicity of GAS and S. aureus for muscles in comparison to keratinocytes, adhesion and invasion of NSTI-GAS and NSTI-SA isolates were assessed in these cells. Bloodstream infections (BSI-SA) and noninvasive coagulase-negative staphylococci (CNS) isolates were used as controls. RESULTS: NSTI-SA and BSI-SA exhibited stronger internalization into human keratinocytes and myoblasts than NSTI-GAS or CNS. S. aureus internalization reached over 30% in human myoblasts due to a higher percentage of infected myoblasts (>11%) as compared to keratinocytes (<3%). Higher cytotoxicity for myoblasts of NSTI-SA as compared to BSI-SA was attributed to higher levels of psmα and RNAIII transcripts in NSTI-SA. However, the 2 groups were not discriminated at the genomic level. The cellular basis of high internalization rate in myoblasts was attributed to higher expression of α5ß1 integrin in myoblasts. Major contribution of FnbpAB-integrin α5ß1 pathway to internalization was confirmed by isogenic mutants. CONCLUSIONS: Our findings suggest a factor in NSTI-SA severity is the strong invasiveness of S. aureus in muscle cells, a property not shared by NSTI-GAS isolates.


Asunto(s)
Fascitis Necrotizante/microbiología , Infecciones de los Tejidos Blandos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Infecciones Estreptocócicas/microbiología , Anciano , Femenino , Humanos , Queratinocitos/microbiología , Masculino , Células Musculares/microbiología , Mioblastos/microbiología , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Adulto Joven
6.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29678918

RESUMEN

Fifteen currently marketed intravaginal protection products (11 types of tampon and 4 types of menstrual cup) were tested by the modified tampon sac method to determine their effect on Staphylococcus aureus growth and toxic shock syndrome toxin 1 (TSST-1) production. Most tampons reduced S. aureus growth and TSST-1 production, with differences based on brand and composition, and the level of S. aureus growth was higher in destructured than in unaltered tampons. We observed higher levels of S. aureus growth and toxin production in menstrual cups than in tampons, potentially due to the additional air introduced into the bag by cups, with differences based on cup composition and size.IMPORTANCE Menstrual toxic shock syndrome is a rare but severe disease. It occurs in healthy women vaginally colonized by Staphylococcus aureus producing toxic shock syndrome toxin 1 using intravaginal protection, such as tampons or menstrual cups. Intravaginal protection induces TSS by the collection of catamenial products, which act as a growth medium for S. aureus Previous studies evaluated the impact of tampon composition on S. aureus producing toxic shock syndrome toxin 1, but they are not recent and did not include menstrual cups. This study demonstrates that highly reproducible results for S. aureus growth and TSST-1 production can be obtained by using a simple protocol that reproduces the physiological conditions of tampon and cup usage as closely as possible, providing recommendations for tampon or cup use to both manufacturers and consumers. Notably, our results do not show that menstrual cups are safer than tampons and suggest that they require similar precautions.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Enterotoxinas/biosíntesis , Productos para la Higiene Menstrual/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Superantígenos/biosíntesis , Toxinas Bacterianas/análisis , Biopelículas , Fibra de Algodón/análisis , Fibra de Algodón/microbiología , Medios de Cultivo , Enterotoxinas/análisis , Femenino , Humanos , Oxígeno/metabolismo , Choque Séptico/microbiología , Choque Séptico/prevención & control , Infecciones Estafilocócicas/complicaciones , Superantígenos/análisis , Vagina/microbiología
8.
PLoS Pathog ; 13(1): e1006092, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060920

RESUMEN

Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors are essential for initiating and propagating the eukaryotic innate immune signaling cascade. Here, we investigate TirS, a Staphylococcus aureus TIR mimic that is part of a novel bacterial invasion mechanism. Its ectopic expression in eukaryotic cells inhibited TLR signaling, downregulating the NF-kB pathway through inhibition of TLR2, TLR4, TLR5, and TLR9. Skin lesions induced by the S. aureus knockout tirS mutant increased in a mouse model compared with wild-type and restored strains even though the tirS-mutant and wild-type strains did not differ in bacterial load. TirS also was associated with lower neutrophil and macrophage activity, confirming a central role in virulence attenuation through local inflammatory responses. TirS invariably localizes within the staphylococcal chromosomal cassettes (SCC) containing the fusC gene for fusidic acid resistance but not always carrying the mecA gene. Of note, sub-inhibitory concentration of fusidic acid increased tirS expression. Epidemiological studies identified no link between this effector and clinical presentation but showed a selective advantage with a SCCmec element with SCC fusC/tirS. Thus, two key traits determining the success and spread of bacterial infections are linked.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Glicoproteínas de Membrana/genética , Proteínas de Unión a las Penicilinas/genética , Receptores de Interleucina-1/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Ácido Fusídico/farmacología , Células HEK293 , Humanos , Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Neutrófilos/inmunología , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/genética , Receptores Toll-Like/genética
9.
Appl Environ Microbiol ; 82(12): 3515-3524, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27060117

RESUMEN

UNLABELLED: The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE: We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species emerged from a bacterial population by acquiring specific functions that allowed them to outcompete their closest relatives. In conclusion, bacterial species could be defined not only as genomic species but also as ecological species.


Asunto(s)
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Ácidos Cumáricos/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas/genética , Sideróforos/biosíntesis , Biotransformación , Medios de Cultivo/química , Perfilación de la Expresión Génica , Hierro/metabolismo , Análisis por Micromatrices , Operón
10.
Appl Environ Microbiol ; 80(11): 3341-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24657856

RESUMEN

The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-ß-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-ß-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-ß-ketopropionic acid (HMPKP)-CoA ß-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent ß-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.


Asunto(s)
Agrobacterium/metabolismo , Coenzima A/metabolismo , Ácidos Cumáricos/metabolismo , Redes y Vías Metabólicas/genética , Agrobacterium/genética , Biotransformación , Hidroxibenzoatos/metabolismo , Plantas/microbiología
11.
Environ Microbiol ; 15(10): 2829-40, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23663419

RESUMEN

Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.


Asunto(s)
Resistencia a Medicamentos/genética , Eucariontes/efectos de los fármacos , Eucariontes/genética , Metales Pesados/farmacología , Microbiología del Suelo , Contaminantes del Suelo/farmacología , Levaduras/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Variación Genética , Metales Pesados/metabolismo , Datos de Secuencia Molecular , Contaminantes del Suelo/metabolismo , Levaduras/efectos de los fármacos
12.
Genome Biol Evol ; 3: 762-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21795751

RESUMEN

The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome-one on the circular chromosome and six on the linear chromosome-suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species.


Asunto(s)
Agrobacterium tumefaciens/genética , Ecología , Evolución Molecular , Genómica , Adaptación Biológica , Agrobacterium tumefaciens/clasificación , Agrobacterium tumefaciens/fisiología , Proteínas Bacterianas/genética , Especiación Genética , Genoma Bacteriano , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...