Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ALTEX ; 39(2): 297­314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064273

RESUMEN

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Asunto(s)
Alternativas a las Pruebas en Animales , Dispositivos Laboratorio en un Chip , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Preparaciones Farmacéuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
2.
Sci Rep ; 11(1): 7432, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795759

RESUMEN

Direct at line monitoring of live virus particles in commercial manufacturing of vaccines is challenging due to their small size. Detection of malformed or damaged virions with reduced potency is rate-limited by release potency assays with long turnaround times. Thus, preempting batch failures caused by out of specification potency results is almost impossible. Much needed are in-process tools that can monitor and detect compromised viral particles in live-virus vaccines (LVVs) manufacturing based on changes in their biophysical properties to provide timely measures to rectify process stresses leading to such damage. Using ERVEBO, MSD's Ebola virus vaccine as an example, here we describe a flow virometry assay that can quickly detect damaged virus particles and provide mechanistic insight into process parameters contributing to the damage. Furthermore, we describe a 24-h high throughput infectivity assay that can be used to correlate damaged particles directly to loss in viral infectivity (potency) in-process. Collectively, we provide a set of innovative tools to enable rapid process development, process monitoring, and control strategy implementation in large scale LVV manufacturing.


Asunto(s)
Citometría de Flujo/métodos , Vacunas Atenuadas/normas , Vacunología/métodos , Vacunología/normas , Vacunas Virales/normas , Animales , Chlorocebus aethiops , Vacunas contra el Virus del Ébola/normas , Humanos , Temperatura , Vacunas Sintéticas/normas , Células Vero , Virión/ultraestructura
3.
Drug Metab Dispos ; 48(11): 1147-1160, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943412

RESUMEN

Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 µM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5µM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Descubrimiento de Drogas/métodos , Ácido Taurocólico/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Humanos , Concentración 50 Inhibidora , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
4.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31799979

RESUMEN

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Asunto(s)
Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip , Hígado/química , Preparaciones Farmacéuticas/química , Medición de Riesgo
5.
Cancer Cell ; 29(4): 548-562, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27052953

RESUMEN

Although glycolysis is substantially elevated in many tumors, therapeutic targeting of glycolysis in cancer patients has not yet been successful, potentially reflecting the metabolic plasticity of tumor cells. In various cancer cells exposed to a continuous glycolytic block, we identified a recurrent reprogramming mechanism involving sustained mTORC1 signaling that underlies escape from glycolytic addiction. Active mTORC1 directs increased glucose flux via the pentose phosphate pathway back into glycolysis, thereby circumventing a glycolysis block and ensuring adequate ATP and biomass production. Combined inhibition of glycolysis and mTORC1 signaling disrupted metabolic reprogramming in tumor cells and inhibited their growth in vitro and in vivo. These findings reveal novel combinatorial therapeutic strategies to realize the potential benefit from targeting the Warburg effect.


Asunto(s)
Glucólisis , Terapia Molecular Dirigida , Complejos Multiproteicos/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Carcinoma/patología , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Terapia Combinada , Citocinas/antagonistas & inhibidores , Citocinas/genética , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Metabolismo Energético/efectos de los fármacos , Everolimus/farmacología , Everolimus/uso terapéutico , Femenino , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/genética , Glutaminasa/antagonistas & inhibidores , Glutaminasa/fisiología , Glutamina/metabolismo , Glucólisis/efectos de los fármacos , Células Hep G2 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Ratones Desnudos , Complejos Multiproteicos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias Ováricas/patología , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/fisiología , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Pharmacol Exp Ther ; 343(1): 225-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22743576

RESUMEN

Glucocorticoids are standard of care for many inflammatory conditions, but chronic use is associated with a broad array of side effects. This has led to a search for dissociative glucocorticoids--drugs able to retain or improve efficacy associated with transrepression [nuclear factor-κB (NF-κB) inhibition] but with the loss of side effects associated with transactivation (receptor-mediated transcriptional activation through glucocorticoid response element gene promoter elements). We investigated a glucocorticoid derivative with a Δ-9,11 modification as a dissociative steroid. The Δ-9,11 analog showed potent inhibition of tumor necrosis factor-α-induced NF-κB signaling in cell reporter assays, and this transrepression activity was blocked by 17ß-hydroxy-11ß-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU-486), showing the requirement for the glucocorticoid receptor (GR). The Δ-9,11 analog induced the nuclear translocation of GR but showed the loss of transactivation as assayed by GR-luciferase constructs as well as mRNA profiles of treated cells. The Δ-9,11 analog was tested for efficacy and side effects in two mouse models of muscular dystrophy: mdx (dystrophin deficiency), and SJL (dysferlin deficiency). Daily oral delivery of the Δ-9,11 analog showed a reduction of muscle inflammation and improvements in multiple muscle function assays yet no reductions in body weight or spleen size, suggesting the loss of key side effects. Our data demonstrate that a Δ-9,11 analog dissociates the GR-mediated transcriptional activities from anti-inflammatory activities. Accordingly, Δ-9,11 analogs may hold promise as a source of safer therapeutic agents for chronic inflammatory disorders.


Asunto(s)
Dronabinol/análogos & derivados , Glucocorticoides/efectos adversos , Glucocorticoides/farmacología , FN-kappa B/antagonistas & inhibidores , Elementos de Respuesta/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Dronabinol/química , Dronabinol/farmacología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , FN-kappa B/metabolismo , Elementos de Respuesta/fisiología , Bazo/efectos de los fármacos , Bazo/metabolismo , Resultado del Tratamiento
7.
EJNMMI Res ; 2(1): 35, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22738240

RESUMEN

BACKGROUND: We recently showed improved between-subject variability in our [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) experiments using a Michaelis-Menten transport model to calculate the metabolic tumor glucose uptake rate extrapolated to the hypothetical condition of glucose saturation: MRglucmax=Ki*(KM+[glc]), where Ki is the image-derived FDG uptake rate constant, KM is the half-saturation Michaelis constant, and [glc] is the blood glucose concentration. Compared to measurements of Ki alone, or calculations of the scan-time metabolic glucose uptake rate (MRgluc = Ki * [glc]) or the glucose-normalized uptake rate (MRgluc = Ki*[glc]/(100 mg/dL), we suggested that MRglucmax could offer increased statistical power in treatment studies; here, we confirm this in theory and practice. METHODS: We compared Ki, MRgluc (both with and without glucose normalization), and MRglucmax as FDG-PET measures of treatment-induced changes in tumor glucose uptake independent of any systemic changes in blood glucose caused either by natural variation or by side effects of drug action. Data from three xenograft models with independent evidence of altered tumor cell glucose uptake were studied and generalized with statistical simulations and mathematical derivations. To obtain representative simulation parameters, we studied the distributions of Ki from FDG-PET scans and blood [glucose] values in 66 cohorts of mice (665 individual mice). Treatment effects were simulated by varying MRglucmax and back-calculating the mean Ki under the Michaelis-Menten model with KM = 130 mg/dL. This was repeated to represent cases of low, average, and high variability in Ki (at a given glucose level) observed among the 66 PET cohorts. RESULTS: There was excellent agreement between derivations, simulations, and experiments. Even modestly different (20%) blood glucose levels caused Ki and especially MRgluc to become unreliable through false positive results while MRglucmax remained unbiased. The greatest benefit occurred when Ki measurements (at a given glucose level) had low variability. Even when the power benefit was negligible, the use of MRglucmax carried no statistical penalty. Congruent with theory and simulations, MRglucmax showed in our experiments an average 21% statistical power improvement with respect to MRgluc and 10% with respect to Ki (approximately 20% savings in sample size). The results were robust in the face of imprecise blood glucose measurements and KM values. CONCLUSIONS: When evaluating the direct effects of treatment on tumor tissue with FDG-PET, employing a Michaelis-Menten glucose correction factor gives the most statistically powerful results. The well-known alternative 'correction', multiplying Ki by blood glucose (or normalized blood glucose), appears to be counter-productive in this setting and should be avoided.

8.
EJNMMI Res ; 2(1): 22, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22651703

RESUMEN

BACKGROUND: The BRAF inhibitor, vemurafenib, has recently been approved for the treatment of metastatic melanoma in patients harboring BRAFV600 mutations. Currently, dual BRAF and MEK inhibition are ongoing in clinical trials with the goal of overcoming the acquired resistance that has unfortunately developed in some vemurafenib patients. FDG-PET measures of metabolic activity are increasingly employed as a pharmacodynamic biomarker for guiding single-agent or combination therapies by gauging initial drug response and monitoring disease progression. However, since tumors are inherently heterogeneous, investigating the effects of BRAF and MEK inhibition on FDG uptake in a panel of different melanomas could help interpret imaging outcomes. METHODS: 18 F-FDG uptake was measured in vitro in cells with wild-type and mutant (V600) BRAF, and in melanoma cells with an acquired resistance to vemurafenib. We treated the cells with vemurafenib alone or in combination with MEK inhibitor GDC-0973. PET imaging was used in mice to measure FDG uptake in A375 melanoma xenografts and in A375 R1, a vemurafenib-resistant derivative. Histological and biochemical studies of glucose transporters, the MAPK and glycolytic pathways were also undertaken. RESULTS: We demonstrate that vemurafenib is equally effective at reducing FDG uptake in cell lines harboring either heterozygous or homozygous BRAFV600 but ineffective in cells with acquired resistance or having WT BRAF status. However, combination with GDC-0973 results in a highly significant increase of efficacy and inhibition of FDG uptake across all twenty lines. Drug-induced changes in FDG uptake were associated with altered levels of membrane GLUT-1, and cell lines harboring RAS mutations displayed enhanced FDG uptake upon exposure to vemurafenib. Interestingly, we found that vemurafenib treatment in mice bearing drug-resistant A375 xenografts also induced increased FDG tumor uptake, accompanied by increases in Hif-1α, Sp1 and Ksr protein levels. Vemurafenib and GDC-0973 combination efficacy was associated with decreased levels of hexokinase II, c-RAF, Ksr and p-MEK protein. CONCLUSIONS: We have demonstrated that 18 F-FDG-PET imaging reflects vemurafenib and GDC-0973 action across a wide range of metastatic melanomas. A delayed post-treatment increase in tumor FDG uptake should be considered carefully as it may well be an indication of acquired drug resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT01271803.

9.
Am J Pathol ; 179(1): 12-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21703390

RESUMEN

The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders.


Asunto(s)
Codón de Terminación/genética , Distrofina/metabolismo , Exones/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Proteínas Mutantes/metabolismo , Animales , Perros , Distrofina/genética , Humanos , Ratones , Músculo Esquelético/citología , Distrofia Muscular de Duchenne/genética , Proteínas Mutantes/genética
10.
Mol Imaging Biol ; 13(3): 462-470, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20661652

RESUMEN

PURPOSE: To develop a reliable live-animal imaging method for monitoring muscle pathology in mouse models of myopathy. PROCEDURES: A caged near-infrared Cathepsin B (CTSB) substrate, ProSense 680, is evaluated in the dystrophin deficient mdx mice, a genetic homologue of Duchenne muscular dystrophy via optical imaging. RESULTS: We show high levels of infrared signal in dystrophic muscle relative to healthy muscle at 24 h post-injection. Imaging for CTSB presence revealed localization to inflammatory infiltrates and regenerating muscle fibers. A time series myotoxin-induced muscle injury experiment showed that CTSB activity and its mRNA levels peaked at the interface between inflammation and myoblast fusion stage of recovery. Prednisone treatment in mdx mice resulted in decreased CTSB activity and increased grip strength in forelimbs and hindlimbs. CONCLUSIONS: Optical imaging of CTSB activity is an ideal method to sensitively monitor inflammation, regeneration, and response to therapy in myopathic skeletal muscle.


Asunto(s)
Catepsina B/metabolismo , Diagnóstico por Imagen/métodos , Rayos Infrarrojos , Músculos/patología , Fenómenos Ópticos , Animales , Catepsina B/genética , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Humanos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculos/efectos de los fármacos , Músculos/enzimología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Prednisona/farmacología , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Toxinas Biológicas/toxicidad , Transcripción Genética/efectos de los fármacos
11.
Int Immunopharmacol ; 9(10): 1209-14, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596085

RESUMEN

Specific therapies are not available for inflammatory muscle diseases. We and others have shown that the pro-inflammatory NF-kappaB pathway is highly activated in these conditions. Since NF-kappaB is an important therapeutic target, we decided to utilize an in vitro screening assay to identify potential inhibitors that block TNF-alpha induced NF-kappaB activation in a C2C12 muscle line stably expressing an NF-kappaB luciferase reporter gene. Upon evaluation of multiple anti-inflammatory agents in undifferentiated myoblasts as well as differentiated myotubes , we found different levels of inhibition depending on the state of differentiation. Interestingly, we found that some drugs that are known to inhibit NF-kappaB in immune cells were not effective in muscle cells. Drug toxicity was assessed for using an MTT cell viability assay, and the validity of the luciferase assay was verified by immunostaining for NF-kappaB nuclear translocation in myoblasts. In conclusion, we have determined the optimal assay conditions for detecting potentially valuable NF-kappaB inhibitors for the first time in a muscle cell line that may have significant therapeutic potential for inflammatory muscle diseases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Músculo Esquelético/efectos de los fármacos , Miositis/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Animales , Línea Celular , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miositis/inmunología , Miositis/patología , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Brain Res ; 1077(1): 16-23, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16487495

RESUMEN

PACAP is a peptide with neuroprotective activity, which induces adenylate cyclase and protein kinase A (PKA) activity. PACAP has also been shown to induce neurite outgrowth in PC12 cells and dorsal root ganglion (DRG) neurons. Here, we report that exogenous PACAP38 promotes neurite outgrowth in the F11 neuroblastoma/dorsal DRG hybrid cell line. Using an automated microscopy system, we show that PACAP38 induces a 170-fold increase in neurite length, with an EC50 of 3.1 nM, compared to 3.7 microM for forskolin and 143.4 microM for dibutyril cyclic AMP (dbcAMP). PACAP38 induced a 4-fold increase in the level of phosphorylation of cAMP-responsive element binding protein (CREB) in F11 cells with an EC50 of 130 pM. In contrast a peptide related to PACAP, vasoactive intestinal peptide (VIP) failed to induce CREB phosphorylation or neurite outgrowth in F11 cells. Addition of the nonselective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX) increased the potency of PACAP at inducing neurite outgrowth by ten-fold. The PKA inhibitor, H89, was a potent inhibitor of PACAP38-induced neurite outgrowth. The delta-opioid receptor agonist, SNC 80, did not inhibit PACAP-induced neurogenesis even though it did reduce CREB phosphorylation. In contrast to previous studies in PC12 cells, PACAP38 failed to show MEK1 activation in F11 cells. PACAP is upregulated in DRG neurons as a result of injury, and F11 cells provide an easily accessible in vitro model for understanding mechanisms underlying PACAP differentiation and neurogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuritas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Transducción de Señal/fisiología , 1-Metil-3-Isobutilxantina , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ganglios Espinales/citología , Inmunohistoquímica , Ratones , Neuritas/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Ratas , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/efectos de los fármacos , Péptido Intestinal Vasoactivo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...