Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Phys Rev Lett ; 125(23): 231802, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337188

RESUMEN

Measuring the cosmic ray flux over timescales comparable to the age of the Solar System, ∼4.5 Gyr, could provide a new window on the history of the Earth, the Solar System, and even our Galaxy. We present a technique to indirectly measure the rate of cosmic rays as a function of time using the imprints of atmospheric neutrinos in "paleo-detectors," natural minerals that record damage tracks from nuclear recoils. Minerals commonly found on Earth are ≲1 Gyr old, providing the ability to look back across cosmic ray history on timescales of the same order as the age of the Solar System. Given a collection of differently aged samples dated with reasonable accuracy, this technique is particularly well-suited to measuring historical changes in the cosmic ray flux at Earth and is broadly applicable in astrophysics and geophysics.

3.
Small ; 15(12): e1804713, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30748106

RESUMEN

Molecular recognition is a crucial driving force for molecular self-assembly. In many cases molecules arrange in the lowest energy configuration following a lock-and-key principle. When molecular flexibility comes into play, the induced-fit effect may govern the self-assembly. Here, the self-assembly of dicyanovinyl-hexathiophene (DCV6T) molecules, a prototype specie for highly efficient organic solar cells, on Au(111) by using low-temperature scanning tunneling microscopy and atomic force microscopy is investigated. DCV6T molecules assemble on the surface forming either islands or chains. In the islands the molecules are straight-the lowest energy configuration in gas phase-and expose the dicyano moieties to form hydrogen bonds with neighbor molecules. In contrast, the structure of DCV6T molecules in the chain assemblies deviates significantly from their gas-phase analogues. The seemingly energetically unfavorable bent geometry is enforced by hydrogen-bonding intermolecular interactions. Density functional theory calculations of molecular dimers quantitatively demonstrate that the deformation of individual molecules optimizes the intermolecular bonding structure. The intermolecular bonding energy thus drives the chain structure formation, which is an expression of the induced-fit effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA