Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Med Chem ; 66(24): 17026-17043, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38090813

RESUMEN

Alzheimer's Disease (AD) is the most widespread form of dementia, with one of the pathological hallmarks being the formation of neurofibrillary tangles (NFTs). These tangles consist of phosphorylated Tau fragments. Asparagine endopeptidase (AEP) is a key Tau cleaving enzyme that generates aggregation-prone Tau fragments. Inhibition of AEP to reduce the level of toxic Tau fragment formation could represent a promising therapeutic strategy. Here, we report the first orthosteric, selective, orally bioavailable, and brain penetrant inhibitors with an irreversible binding mode. We outline the development of the series starting from reversible molecules and demonstrate the link between inhibition of AEP and reduction of Tau N368 fragment both in vitro and in vivo.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación
2.
Neuroimage Clin ; 39: 103484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37541098

RESUMEN

OBJECTIVE: In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS: A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS: [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION: [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.


Asunto(s)
Péptidos beta-Amiloides , Fluorodesoxiglucosa F18 , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Tomografía de Emisión de Positrones/métodos , Ratones Transgénicos , Cintigrafía , Modelos Animales de Enfermedad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
3.
Front Aging Neurosci ; 14: 854031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431893

RESUMEN

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

4.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644146

RESUMEN

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedades Neurodegenerativas , Humanos , Glucosa , Microglía , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Ratones
5.
Theranostics ; 11(18): 8964-8976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522221

RESUMEN

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores de GABA/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Inmunomodulación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/fisiología , Factores Sexuales
6.
Limnol Oceanogr ; 66(8): 3190-3208, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34588708

RESUMEN

Coccolithophores are among the most important calcifying pelagic organisms. To assess how coccolithophore species with different coccolith-carbonate mass and distinct ecological resilience to ocean warming will influence the "rain ratio" and the "biological carbon pump", 1 yr of species-specific coccolith-carbonate export fluxes were quantified using sediment traps moored at four sites between NW Africa and the Caribbean (i.e., CB-20°N/21°W, at 1214 m; M1-12°N/23°W, at 1150 m; M2-14°N/37°W, at 1235 m; M4-12°N/49°W, at 1130 m). Highest coccolith-CaCO3 fluxes at the westernmost site M4, where the nutricline is deepest along the tropical North Atlantic, were dominated by deep-dwelling small-sized coccolith species Florisphaera profunda and Gladiolithus flabellatus. Total coccolith-CaCO3 fluxes of 371 mg m-2 yr-1 at M4 were followed by 165 mg m-2 yr-1 at the north-easternmost CB, 130 mg m-2 yr-1 at M1, and 114 mg m-2 yr-1 at M2 in between. Coccoliths accounted for nearly half of the total carbonate flux at M4 (45%), much higher compared to 23% at M2 and 15% at M1 and CB. At site M4, highest ratios of coccolith-CaCO3 to particulate organic carbon fluxes and weak correlations between the carbonate of deep-dwelling species and particulate organic carbon suggest that increasing productivity in the lower photic zone in response to ocean warming might enhance the rain ratio and reduce the coccolith-ballasting efficiency. The resulting weakened biological carbon pump could, however, be counterbalanced by increasing frequency of Saharan dust outbreaks across the tropical Atlantic, providing mineral ballast as well as nutrients to fuel fast-blooming and ballast-efficient coccolithophore species.

7.
J Med Chem ; 63(15): 8534-8553, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32706964

RESUMEN

Starting from RO6800020 (1), our former γ-secretase modulator (GSM) lead compound, we utilized sequential structural replacements to improve the potency (IC50), pharmacokinetic properties including the free fraction (fraction unbound (fu)) in plasma, and in vivo efficacy. Importantly, we used novel CF3-alkoxy groups as bioisosteric replacements of a fluorinated phenyl ring and properties such as lipophilicity, solubility, metabolic stability, and free fraction could be balanced, maintaining low Pgp efflux needed for CNS penetration. In addition, by reducing aromaticity, we prevented phototoxicity. Additional substitution in the triazolopyridine core disturbed the binding to phosphatidylinositol 4-kinase, catalytic ß (PIK4CB). We also introduced less lipophilic head heterocycles devoid of covalent binding (CVB) liability. After these changes, further modifications to the trifluoroethoxy bioisosteric replacement allowed rebalancing of properties, such as lipophilicity, and also potency. Our optimization strategy culminated with in vivo active RO7101556 (18B) having excellent properties and being selected as an advanced candidate.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/farmacocinética , Humanos , Ratones Transgénicos , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo
8.
ACS Med Chem Lett ; 11(6): 1257-1268, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551009

RESUMEN

γ-Secretase (GS) is a key target for the potential treatment of Alzheimer's disease. While inhibiting GS led to serious side effects, its modulation holds a lot of potential to deliver a safe treatment. Herein, we report the discovery of a potent and selective gamma secretase modulator (GSM) (S)-3 (RO7185876), belonging to a novel chemical class, the triazolo-azepines. This compound demonstrates an excellent in vitro and in vivo DMPK profile. Furthermore, based on its in vivo efficacy in a pharmacodynamic mouse model and the outcome of the dose range finding (DRF) toxicological studies in two species, this compound was selected to undergo entry in human enabling studies (e.g., GLP toxicology and scale up activities).

9.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32414948

RESUMEN

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Asunto(s)
Péptidos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregado de Proteínas , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones
10.
EMBO Rep ; 21(1): e47996, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31762188

RESUMEN

Abnormal generation of neurotoxic amyloid-ß peptide (Aß) 42/43 species due to mutations in the catalytic presenilin 1 (PS1) subunit of γ-secretase is the major cause of familial Alzheimer's disease (FAD). Deeper mechanistic insight on the generation of Aß43 is still lacking, and it is unclear whether γ-secretase modulators (GSMs) can reduce the levels of this Aß species. By comparing several types of Aß43-generating FAD mutants, we observe that very high levels of Aß43 are often produced when presenilin function is severely impaired. Altered interactions of C99, the precursor of Aß, are found for all mutants and are independent of their particular effect on Aß production. Furthermore, unlike previously described GSMs, the novel compound RO7019009 can effectively lower Aß43 production of all mutants. Finally, substrate-binding competition experiments suggest that RO7019009 acts mechanistically after initial C99 binding. We conclude that altered C99 interactions are a common feature of diverse types of PS1 FAD mutants and that also patients with Aß43-generating FAD mutations could in principle be treated by GSMs.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Secretasas de la Proteína Precursora del Amiloide/genética , Mutación , Presenilina-1/genética
11.
Mol Cell Neurosci ; 100: 103392, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31381983

RESUMEN

In drug discovery, as well as in the study of disease biology, it is fundamental to develop models that recapitulate aspects of a disorder, in order to understand the pathology and test therapeutic approaches. Patient-derived induced pluripotent stem cells (iPSCs) offer the potential of obtaining tissue-specific cells with a given human genotype. Here we derived neural cultures from Alzheimer's disease patient iPSCs and characterized their response to three classes of compounds that reduce the production of Aß42, a major driving force of this pathology. We characterized their effect on the cells, looking at Tau proteostasis and gene expression changes by RNAseq. ß-secretase inhibitor and γ-secretase modulators left the transcriptional balance of the cells virtually unaffected, while γ-secretase inhibitors caused drastic gene expression changes due to Notch inhibition. We observed similar effects in vivo, treating mice with the same compound classes. Our results show that ß-secretase inhibitors and γ-secretase modulators are attractive candidates for modulating Aß production in Alzheimer's disease. Moreover, we demonstrate that the response to compounds obtained with iPSC-derived neurons is similar to the one observable in vivo.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/metabolismo , Animales , Línea Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Proteostasis , Proteínas tau/metabolismo
12.
Neurobiol Dis ; 121: 205-213, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30236861

RESUMEN

Synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal α-synuclein in intraneuronal inclusions, named Lewy bodies. Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase, have been identified as the most common genetic risk factor for PD and DLB. However, despite extensive research, the mechanism by which glucocerebrosidase dysfunction increases the risk for PD or DLB still remains elusive. In our study we expand the toolbox for PD-DLB post-mortem studies by introducing new quantitative biochemical assays for glucocerebrosidase and α-synuclein. Applying causal modelling, we determine how these parameters are interrelated and ultimately impact disease manifestation. We developed quantitative immuno-based assays for glucocerebrosidase and α-synuclein (total and phosphorylated at Serine 129) protein levels, as well as a liquid chromatography-mass spectrometry method for the detection of the glucocerebrosidase lipid substrate glucosylsphingosine. These assays were applied on tissue samples from frontal cortex, putamen and substantia nigra of PD (n = 15) and DLB (n = 15) patients and age-matched non-demented controls (n = 15). Our results confirm elevated p-129 over total α-synuclein levels in the insoluble fraction of PD and DLB post-mortem brain tissue and we found significantly increased α-synuclein levels in the soluble fractions in PD and DLB. Furthermore, we identified an inverse correlation between reduced glucocerebrosidase enzyme activity and protein levels with increased glucosylsphingosine levels. In the substantia nigra, a brain region particularly vulnerable in Parkinson's disease, we found a significant correlation between glucocerebrosidase protein reduction and increased p129/total α-synuclein ratios. We assessed the direction and strength of the interrelation between all measured parameters by confirmatory path analysis. Interestingly, we found that glucocerebrosidase dysfunction impacts the PD-DLB status by increasing α-synuclein ratios in the substantia nigra, which was partly mediated by increasing glucosylsphingosine levels. In conclusion, we show that the introduced immuno-based assays enable the quantitative assessment of glucocerebrosidase and α-synuclein parameters in post-mortem brain. In the substantia nigra, reduced glucocerebrosidase levels contribute to the increase in α-synuclein levels and to PD-DLB disease manifestation partly by increasing its glycolipid substrate glucosylsphingosine. This interrelation between glucocerebrosidase, glucosylsphingosine and α-synuclein parameters supports the hypothesis that glucocerebrosidase acts as a modulator of PD-DLB.


Asunto(s)
Encéfalo/metabolismo , Glucosilceramidasa/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Cromatografía Liquida/métodos , Interpretación Estadística de Datos , Femenino , Glucosilceramidasa/análisis , Humanos , Inmunoensayo/métodos , Masculino , Espectrometría de Masas/métodos , alfa-Sinucleína/análisis
13.
J Nucl Med ; 60(4): 548-554, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30262517

RESUMEN

Neuroinflammation may have beneficial or detrimental net effects on the cognitive outcome of Alzheimer disease (AD) patients. PET imaging with 18-kDa translocator protein (TSPO) enables longitudinal monitoring of microglial activation in vivo. Methods: We compiled serial PET measures of TSPO and amyloid with terminal cognitive assessment (water maze) in an AD transgenic mouse model (PS2APP) from 8 to 13 mo of age, followed by immunohistochemical analyses of microglia, amyloid, and synaptic density. Results: Better cognitive outcome and higher synaptic density in PS2APP mice was predicted by higher TSPO expression at 8 mo. The progression of TSPO activation to 13 mo also showed a moderate association with spared cognition, but amyloidosis did not correlate with the cognitive outcome, regardless of the time point. Conclusion: This first PET investigation with longitudinal TSPO and amyloid PET together with terminal cognitive testing in an AD mouse model indicates that continuing microglial response seems to impart preserved cognitive performance.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Cognición , Microglía/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Proteínas Amiloidogénicas/metabolismo , Animales , Femenino , Estudios Longitudinales , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones , Pronóstico , Receptores de GABA/metabolismo
14.
J Neuroinflammation ; 15(1): 307, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400912

RESUMEN

BACKGROUND: Causal associations between microglia activation and ß-amyloid (Aß) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (µPET) imaging to resolve the progression of the association between Aß deposition and microglial responses during aging of an Aß mouse model. METHODS: APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aß (18F-florbetaben) and 18 kDa translocator protein (TSPO) µPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aß). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aß (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS: Aß-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aß plaques increased with age. CONCLUSIONS: Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/diagnóstico por imagen , Animales , Proteínas de Unión al Calcio/metabolismo , Carbazoles/farmacocinética , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18/farmacocinética , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Radioquímica , Receptores de GABA/metabolismo
15.
PLoS One ; 13(7): e0200012, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29966023

RESUMEN

A natural pH gradient caused by marine CO2 seeps off the Methana peninsula (Saronikos Gulf, eastern Peloponnese peninsula) was used as a natural laboratory to assess potential effects of ocean acidification on coccolithophores. Coccolithophore communities were therefore investigated in plankton samples collected during September 2011, September 2016 and March 2017. The recorded cell concentrations were up to ~50 x103 cells/l, with a high Shannon index of up to 2.8, along a pH gradient from 7.61 to 8.18, with values being occasionally <7. Numerous holococcolithophore species represented 60-90% of the surface water assemblages in most samples during September samplings. Emiliania huxleyi was present only in low relative abundances in September samples, but it dominated in March assemblages. Neither malformed nor corroded coccolithophores were documented. Changes in the community structure can possibly be related to increased temperatures, while the overall trend associates low pH values with high cell densities. Our preliminary results indicate that in long-termed acidified, warm and stratified conditions, the study of the total coccolithophore assemblage may prove useful to recognize the intercommunity variability, which favors the increment of lightly calcified species such as holococcolithophores.


Asunto(s)
Dióxido de Carbono/farmacología , Haptophyta/efectos de los fármacos , Dióxido de Carbono/química , Ácido Carbónico/química , Ácido Carbónico/farmacología , Clorofila A/metabolismo , Cambio Climático , Grecia , Haptophyta/crecimiento & desarrollo , Haptophyta/metabolismo , Concentración de Iones de Hidrógeno , Mar Mediterráneo , Nutrientes/farmacología , Salinidad , Temperatura
16.
Data Brief ; 19: 331-336, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29892655

RESUMEN

Data in this article show radioligand uptake (to gamma counter and positron-emission-tomography) as well as polymerase chain reaction analyses of 18 kDa translocator protein (TSPO) quantification. We confirmed specificity of [18F]GE180 binding of rodent brain and myocardium by blocking experiments with prior application of non-radioactive GE180, using dynamic in vivo positron-emission-tomography and ex vivo gamma counter measurements. Expression of TSPO was compared between rodent brain and myocardium by quantitative polymerase chain reaction.

17.
Neuroimage ; 165: 83-91, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28988133

RESUMEN

OBJECTIVES: PET imaging of the 18 kDa translocator protein (TSPO), a biomarker of microglial activity, receives growing interest in clinical and preclinical applications of neuroinflammatory and neurodegenerative brain diseases. In globally affected brains, intra-cerebral pseudo reference regions are not feasible. Consequently, many brain-independent approaches have been attempted, including SUV analysis and normalization to muscle- or heart uptake, aiming to stabilize quantitative analysis. In this study, we systematically compared different image normalization methods for static late phase TSPO-PET imaging of rodent brain. METHODS: We first obtained gamma counter measurements for gold standard quantitation of [18F]GE180 uptake in brain of C57Bl/6 mice (N = 10) after PET, aiming to identify factors contributing significantly to the quantitative results. Subsequently, data from a large cohort of C57Bl/6 mice (N = 79) were compiled to precisely determine the weighted influence and variance attributable these factors by regression analysis. Scan-rescan variability and agreement with histology were used to validate the tested normalization methods in an Alzheimer's disease (AD) mouse model with pathologically increased TSPO expression (PS2APP; N = 24). Longitudinal data from AD model mice (N = 10) scanned at four different ages were used to challenge and validate the different normalization methods in a practical application. RESULTS: Gamma counter results revealed that injected dose, body weight and PET-measured radioactivity concentration in the ventral myocardium all significantly accounted for [18F]GE180 activity in the brain. Skeletal muscle activity had high test-retest variance in this PET only application and was therefore pursued no further. Regression analysis of the large scale evaluation showed that scaling to injected dose or SUV analysis accounted for little variance in brain activity (R2 < 0.5), but inclusion of myocardial activity together with injected dose and body weight in the regression model accounted for most of the variance in brain uptake (R2 = 0.94). Scan-rescan stability, correlation with histology and applicability for longitudinal examination in the disease model were also significantly improved by inclusion of myocadial uptake in the quantitative model. CONCLUSION: Cerebral and myocardial TSPO expression are highly coupled under physiological conditions. Myocardial uptake has great potential for stabilization of static late phase [18F]GE180 quantification in brain in the absence of a valid intra-cerebral pseudo-reference region.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/análisis , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Femenino , Radioisótopos de Flúor , Corazón/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Miocardio , Neuroimagen/métodos , Cintigrafía/métodos , Radiofármacos
18.
Stem Cell Res ; 23: 122-126, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28925361

RESUMEN

We describe the generation of a biallelic GBA deletion human embryonic stem cell line using zinc finger nuclease-mediated gene targeting. The homozygous targeting of exon 4 of the GBA locus leads to a complete loss of glucocerebrosidase (GCase) protein expression.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Eliminación de Gen , Glucosilceramidasa/genética , Células Madre Embrionarias Humanas/enzimología , Secuencia de Bases , Línea Celular , Homocigoto , Humanos , Mutación con Pérdida de Función/genética
19.
EBioMedicine ; 24: 76-92, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28923680

RESUMEN

Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidß (Aß) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aß levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aß. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Encéfalo/metabolismo , Fragmentos de Péptidos/administración & dosificación , Administración Intravenosa , Secretasas de la Proteína Precursora del Amiloide/química , Animales , Ácido Aspártico Endopeptidasas/química , Barrera Hematoencefálica/metabolismo , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Fragmentos de Péptidos/farmacología , Receptores de Transferrina/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-28197095

RESUMEN

Heterozygous missense mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been reported to significantly increase the risk of developing Alzheimer's disease (AD). Since TREM2 is specifically expressed by microglia in the brain, we hypothesized that soluble TREM2 (sTREM2) levels may increase together with in vivo biomarkers of microglial activity and amyloidosis in an AD mouse model as assessed by small animal positron-emission-tomography (µPET). In this cross-sectional study, we examined a strong amyloid mouse model (PS2APP) of four age groups by µPET with [18F]-GE180 (glial activation) and [18F]-florbetaben (amyloidosis), followed by measurement of sTREM2 levels and amyloid levels in the brain. Pathology affected brain regions were compared between tracers (dice similarity coefficients) and pseudo-longitudinally. µPET results of both tracers were correlated with terminal TREM2 levels. The brain sTREM2 levels strongly increased with age of PS2APP mice (5 vs. 16 months: +211%, p < 0.001), and correlated highly with µPET signals of microglial activity (R = 0.89, p < 0.001) and amyloidosis (R = 0.92, p < 0.001). Dual µPET enabled regional mapping of glial activation and amyloidosis in the mouse brain, which progressed concertedly leading to a high overlap in aged PS2APP mice (dice similarity 67%). Together, these results substantiate the use of in vivo µPET measurements in conjunction with post mortem sTREM2 in future anti-inflammatory treatment trials. Taking human data into account sTREM2 may increase during active amyloid deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...